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A new parametrization of the multi-channel S-matrix is used to fit scattering data and
then to locate the resonances as its poles. The S-matrix is written in terms of the
corresponding “in” and “out” Jost matrices which are expanded in the Taylor series
of the collision energy E around an appropriately chosen energy E0. In order to do this,
the Jost matrices are written in a semi-analytic form where all the factors (involving
the channel momenta and Sommerfeld parameters) responsible for their “bad behavior”
(i.e., responsible for the multi-valuedness of the Jost matrices and for branching of the
Riemann surface of the energy) are given explicitly. The remaining unknown factors
in the Jost matrices are analytic and single-valued functions of the variable E and are
defined on a simple energy plane. The expansion is done for these analytic functions and
the expansion coefficients are used as the fitting parameters. The method is tested on
a two-channel model, using a set of artificially generated data points with typical error
bars and a typical random noise in the positions of the points.
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1. Introduction

The main parameters that characterize any quantum resonance are the collision
energy Er, at which this state can be excited and the width Γ that determines
the lifetime of the state. For a multi-channel system the total width is the sum of
the partial widths, Γ = Γ1 + Γ2 + · · ·, where Γn/Γ gives the relative probability of
decaying into the nth channel. There are many different methods for determining
these parameters from a set of scattering data (several of them are described in
Refs. 1, 2). These methods form two big groups based on two principally different
approaches.
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Within the first approach, the parameters Er, Γ, Γ1, Γ2, etc. are treated as
the adjustable variables in a procedure of fitting the available experimental data.
The simplest and most well-known example of such a method is the Breit–Wigner
parametrization of the amplitude.3 A common feature of all of the methods belong-
ing to this category is that the number of resonances is fixed from the outset.
All these methods use some parametric expression for the amplitude, or for the
S-matrix, or directly for the cross-section, where the resonance singularities (or the
zigzags of the cross-section) are embedded into this parametric expression by hand.
These methods only differ in the method of parametrization and in the derivation
of the parametric expression.

Within the second approach, the resonances are considered as the poles of the
S-matrix at the complex energies Er − iΓ/2 in an appropriate domain of the
Riemann surface of the energy. The S-matrix is written in a more general form
with some adjustable parameters that do not necessarily coincide with the reso-
nance parameters. Usually, it is not known beforehand how many resonances can
be found (if any). After fitting the data at real collision energies, the analytic
expression for the S-matrix thus obtained is examined at complex energies where
the poles (if found) are interpreted as the resonances. The Padé approximation of
the S-matrix1,4,5 and the Laurent–Pietarinen series expansion of the amplitude6

can be mentioned as examples.
The method we describe here belongs to the second category and is based on the

rigorous semi-analytic expression for the N -channel Jost matrix derived in Ref. 7. In
that expression, all the factors responsible for the “bad behavior” of the Jost matrix
(i.e., factors depending on the Sommerfeld parameters and the channel momenta
responsible for the branching of the Riemann surface) are given explicitly. The
remaining unknown factors are analytic and single-valued functions of E defined
on a simple energy plane. These functions are expanded in the Taylor series, and
the expansion coefficients serve as the fitting parameters.

2. Parametrization

In Ref. 7, it was shown that for a nonrelativistic reaction of the type a+ b→ c+ d

involving charged particles, the N -channel Jost matrix has the following general
form:

f (in/out)
mn (E) =

eπηm/2�m!
2Γ(�m + 1 ± iηm)

{
C�n(ηn)k�n+1

n

C�m(ηm)k�m+1
m

Amn(E)

−
[
2ηmh(ηm)
C2

0 (ηm)
± i

]
C�m(ηm)C�n(ηn)k�m

m k�n+1
n Bmn(E)

}
, (1)

where

kn = ±
√

2µn

�2
(E − En), n = 1, 2, . . . , N, (2)
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are the channel momenta determined by the differences between the total energy
E and the channel thresholds En, as well as by the corresponding reduced masses
µn; the channel angular momenta and the Sommerfeld parameters are �n and ηn =
µne

2Z1Z2/(kn�
2); the function

C�(η) =
2�e−πη/2

Γ(2�+ 2)
|Γ(�+ 1 ± iη)| (3)

is the Coulomb barrier factor; and

h(η) =
1
2
[ψ(iη) + ψ(−iη)] − ln η̂, ψ(z) =

Γ′(z)
Γ(z)

, η̂ =
µe2|Z1Z2|

k�2
. (4)

It is shown that the remaining unknown matrices A(E) and B(E) in Eq. (1) are
single-valued and analytic functions of the energy, defined on a simple energy plane
without branching points. All the complicated topology of the Riemann surface
where the Jost functions are defined is determined by the coefficients of the matrices
A(E) and B(E), given in Eq. (1) explicitly.

If for a given energy E the Jost matrices (1) are known, then the corresponding
S-matrix is just their “ratio,”

S(E) = f (out)(E)[f (in)(E)]−1, (5)

and the scattering cross-section for the channel n→ m can be found as

σmn(E) =
π

k2
n

(2�n + 1)|Smn(E) − δmn |2. (6)

The resonances are the points

E = Er − i

2
Γ, Er > 0, Γ > 0, (7)

on the Riemann surface of the energy, where

det f (in)(E) = 0 (8)

and therefore where the S-matrix has poles.
The energy surface has a square-root branching point at every channel threshold

En. This is because the Jost matrices depend on the energy E via the channel
momenta (2) and for each of them there are two possible choices of the sign in
front of the square root. The resonance spectral points are located on the so-called
nonphysical sheet of this Riemann surface, i.e., such a layer of the surface where all
the channel momenta have negative imaginary parts. In the numerical calculations,
the choice of the sheet is done by an appropriate choice of the signs in front of the
square roots (2).

Since the matrices A(E) and B(E) are analytic, they can be expanded in the
Taylor series around any complex point E0. Near this point, they can therefore be
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approximated by the first M terms of these series:

A(E) ≈
M∑
i=0

ai(E0)(E − E0)i, (9)

B(E) ≈
M∑
i=0

bi(E0)(E − E0)i, (10)

where the expansion coefficients ai and bi are (N × N)-matrices. These matrices
depend only on the choice of the point E0. After finding them, the Jost matrices
(1) can be used at any complex energy E within a circle around E0, where the
approximations (9, 10) are satisfactory.

We treat the elements of the matrices ai and bi as the adjustable parameters in
the procedure of fitting experimental cross-section. After finding the optimal values
for them, we look for the roots of Eq. (8) and thus find the resonance parameters Er

and Γ. As to the partial widths Γn, they can easily be found following the procedure
described in Ref. 8. Indeed, we know their sum Γ = Γ1 + Γ2 + · · ·+ ΓN and we can
find their ratios (see Ref. 8):

Γm

Γn
= lim

E→E

∣∣∣∣Smm(E)
Snn(E)

∣∣∣∣. (11)

At a resonance energy, E = E , all the elements of the S-matrix are singular because
all of them have the same singular factor 1/det f (in)(E). However, in the ratio (11)
this factor cancels out. Therefore, if we explicitly invert the matrix f (in) and use it in
Eq. (5) without common factor 1/det f (in), then we can avoid numerical evaluation
of the limit (11). In the simplest case of a two-channel problem, we obtain:

Γ1

Γ2
=

∣∣∣∣∣f
(out)
11 f

(in)
22 − f

(out)
12 f

(in)
21

f
(out)
22 f

(in)
11 − f

(out)
21 f

(in)
12

∣∣∣∣∣
E=E

, N = 2. (12)

It should be noted that such a simple and numerically stable procedure for calcu-
lating the partial widths is only possible when the Jost matrices are parametrized.
If we were parametrizing the S-matrix directly, then the limits (11) would have to
be calculated numerically as the ratios of singular functions.

3. Fitting

We assume that there are sets of experimental data available for at least one channel
n→ m (or perhaps for several channels), i.e., the cross-sections

σmn(E(mn)
i ) ± δ

(mn)
i , i = 1, 2, . . . , N (mn)

with the corresponding experimental errors (standard deviations) δ(mn), measured
at the collision energies E(mn)

i . The center E0 of the expansions (9, 10) can be
chosen somewhere within the interval covered by these collision energies (where we
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expect to find a resonance). The optimal values of the expansion parameters are
found by minimizing the following χ2 function

χ2 =
N(mn)∑

i=1

[
σmn(E(mn)

i ) − σfit
mn(E(mn)

i )

δ
(mn)
i

]2

+
N(m′n′)∑

j=1

[
σm′n′(E(m′n′)

j ) − σfit
m′n′(E(m′n′)

j )

δ
(m′n′)
j

]2

+ · · · +
∑

m<n,j

|Smn(E(mn)
j ) − Snm(E(mn)

j )|2, (13)

where the fitting cross-section σfit
mn depends on the expansion coefficients via Eqs.

(6), (5) and (1). The last sum in the above χ2 function makes the fitted S-matrix
symmetric in accordance with the detailed balance theorem (see a more detailed
discussion in Ref. 9). The minimization is done using the MINUIT code.11

The number of the adjustable parameters depends on the number N of the
existing channels (the data do not have to be available for all of them) and on
the number M of the terms in the Taylor series (9, 10). Generally speaking, the
expansion coefficients a(E0) and b(E0) are the N×N matrices of complex elements.
However, as was shown in Ref. 7, they become real matrices if the point E0 is on the
real axis. Therefore, if E0 is on the interval covered by the experimental energies
E

(mn)
i , the total number of real fitting parameters is 2(M + 1)N2.

4. Example

In order to demonstrate the efficiency of the proposed method, we choose a model
two-channel problem where the parameters of the resonances can be determined
in an exact way. For this model, we generate artificial data points with a typical
distribution of errors. In addition to the error-bar for each pseudo-data point, we
introduce a random shift (up or down) from the exact cross-section curve, i.e., a typ-
ical experimental “noise.” Using these points, we extract the resonance parameters
and compare them with the corresponding exact values.

Our artificial data points are generated using the following two-channel potential
having a Coulomb tail:

V (r) =

(
−1.0 −7.5

−7.5 7.5

)
r2e−r +

(
1 0

0 1

)
1
r
. (14)

The short-range term in this potential is the same as in the famous Noro–Taylor
model.10 The units in Eq. (14) are therefore the same, namely, they are such that
the reduced masses for both channels are equal to one, µ1 = µ2 = 1, with �c = 1,
and both angular momenta are zero, �1 = �2 = 0. The threshold energies for the
channels are E1 = 0 and E2 = 0.1.
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For a given potential, the matrices A(E) and B(E) in Eq. (1) can be found as
the solutions of differential equations derived in Ref. 7. This can be done for any
complex energy with the help of the complex rotation of the coordinate described
in Ref. 8. In this way, we can find the exact Jost matrices and therefore the exact
cross-section as well as the exact resonance parameters. The first six resonances
thus located for the potential (14) are listed in Table 1.

For each of the elastic channels, (1 → 1) and (2 → 2), we generated 30 artificial
data points in the energy interval 6 < E < 11. In order to make them more realistic,
these points were randomly shifted around the corresponding exact cross-section
curves, using the Gaussian distribution, i.e., the values σmn(E(mn)

i ) were replaced
with

σmn(E(mn)
i ) → σmn(E(mn)

i )Gi,

where Gi were the normally distributed random numbers with the mean value 1
and the standard deviation ∆. We used three values of ∆, namely, 0.01, 0.05 and
0.10. This was done to test the stability of the method.

Table 1. The resonance energies and widths generated by the
potential (14).

Er Γ Γ1 Γ2

1 6.278042551 0.036866729 0.006898807 0.029967922
2 8.038507867 2.563111275 0.617710684 1.945400591
3 8.861433400 7.883809113 1.949506410 5.934302704
4 9.020824224 14.07907263 3.591961102 10.48711153
5 8.566130944 20.75266055 5.414178669 15.33848188
6 7.548492959 27.69926473 7.328979882 20.37028485

E

σ11(E)

6 7 8 9 10
0

0.1

0.2

0.3

1 → 1

∆ = 0.01

exact↓
↑
fit

Fig. 1. The data points for the elastic channel (1 → 1) together with the curves showing the
exact and fitted cross-sections. The experimental noise for the points has the normal distribution
with the standard deviation ∆ = 0.01.
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The center of expansion was taken as E0 = 8. In the case of low experimental
noise (∆ = 0.01), we used M = 5, i.e., the first six terms of the series (9, 10) were
taken into account. For higher noise, the number of terms in the expansions was
smaller, namely, M = 3. The reason for such a choice was that with larger M , the
fitting curve tries to pass through almost all the data points and thus does noisy
zigzags, which result in a loss of overall accuracy.

Figure 1 shows the exact cross-section σ11(E), the artificial data points with
∆ = 0.01, and the curve obtained by fitting these points. The same information
for the channel (2 → 2) is given in Fig. 2 (also for ∆ = 0.01). Similarly, Figs. 3–6
show the corresponding exact and fitted cross-sections as well as the data points
for stronger experimental noise, namely, for ∆ = 0.05 and ∆ = 0.10.

E

σ22(E)

6 7 8 9 10

0

0.2

0.4

0.6
2 → 2

∆ = 0.01

exact
↓

fit

Fig. 2. The data points for the elastic channel (2 → 2) together with the curves showing the
exact and fitted cross-sections. The experimental noise for the points has the normal distribution
with the standard deviation ∆ = 0.01.

E

σ11(E)

6 7 8 9 10
0

0.1

0.2

0.3

1 → 1

∆ = 0.05

exact

← fit

Fig. 3. The data points for the elastic channel (1 → 1) together with the curves showing the
exact and fitted cross-sections. The experimental noise for the points has the normal distribution
with the standard deviation ∆ = 0.05.
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E

σ22(E)

6 7 8 9 10

0

0.2

0.4

0.6
2 → 2

∆ = 0.05

exact
↓

↑
fit

Fig. 4. The data points for the elastic channel (2 → 2) together with the curves showing the
exact and fitted cross-sections. The experimental noise for the points has the normal distribution
with the standard deviation ∆ = 0.05.

E

σ11(E)

6 7 8 9 10
0

0.1

0.2

0.3

1 → 1

∆ = 0.10

exact

↑
fit

Fig. 5. The data points for the elastic channel (1 → 1) together with the curves showing the
exact and fitted cross-sections. The experimental noise for the points has the normal distribution
with the standard deviation ∆ = 0.10.

In fitting the data points in the elastic channels (1 → 1) and (2 → 2) all matrix
elements of the Jost matrices are involved. As a result, not only the diagonal but
also the off-diagonal elements of the S-matrix should be close to the correct values.
This means that even without having any data points in the inelastic channels,
we should obtain the cross-sections σ21(E) and σ12(E) that are not far from the
corresponding exact curves. Figure 7 shows the exact cross-section for the inelastic
channel (1 → 2) and the curves obtained for it with ∆ = 0.01, 0.05, and 0.10. Of
course, as one would expect, the greater the accuracy of the experimental data, the
more accurate is the prediction for the cross-section in the channel where no data
are available.
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E

σ22(E)

6 7 8 9 10

0

0.2

0.4

0.6
2 → 2

∆ = 0.10

exact
↓

↑
fit

Fig. 6. The data points for the elastic channel (2 → 2) together with the curves showing the
exact and fitted cross-sections. The experimental noise for the points has the normal distribution
with the standard deviation ∆ = 0.10.

σ21(E)

E6 7 8 9 10

0

0.04

0.08

0.12

0.16 1 → 2

∆ = 0.01, 0.05, 0.10

exact
↓

0.01←

0.05
↓

0.10
↓

Fig. 7. Exact inelastic cross-section (thin curve) for the channel (1 → 2) and the approximate
curves obtained after fitting the data in the elastic channels with the experimental noise determined
by the standard deviations ∆ = 0.01, 0.05, and 0.10.

After fitting the data, we looked for the roots of Eq. (8) on the nonphysical
sheet of the Riemann surface of the energy. For this sheet, the signs in Eq. (2)
are chosen in such a way that both channel momenta k1 and k2 have negative
imaginary parts. The roots thus found correspond to the resonance spectral points.
They are listed in Table 2 for all three levels of the experimental noise. Of course,
the more accurate the measurements, the closer to the exact values are the extracted
resonance parameters. Even with very high experimental noise (∆ = 0.10) we are
still able to extract at least the first resonance with a reasonable accuracy.
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Table 2. The resonance parameters obtained from fitting the data with different

degrees of experimental noise.

Resonance ∆ Er Γ Γ1 Γ2

1 exact 6.278042552 0.036866729 0.006898807 0.029967922
0.01 6.277997424 0.036731019 0.006721542 0.030009477
0.05 6.278563562 0.035568397 0.006497720 0.029070677
0.10 6.278669302 0.036236713 0.006638945 0.029597768

2 exact 8.038507867 2.563111275 0.617710684 1.945400591
0.01 7.998939904 2.096675299 0.623726003 1.472949296
0.05 7.676616089 2.502856671 0.792088450 1.710768220
0.10 7.968634195 1.662113407 0.231505793 1.430607614

3 exact 8.861433400 7.883809114 1.949506410 5.934302704
0.01 11.21325906 3.204531546 0.031776330 3.172755216
0.05 9.188805831 2.549030291 0.364986606 2.184043685
0.10 9.259323135 2.226793463 1.232709401 0.994084062

5. Conclusion

The main idea of the proposed method has its roots in the so-called “effective-range
expansion” widely used in nuclear and atomic physics (see, for example, Ref. 1).
Within this approach, a certain function of the scattering phase-shift is expanded
in the power series of the collision energy, and the expansion coefficients are used
as the adjustable parameters to fit experimental data. Traditional effective-range
expansion is very useful but is limited to low energies. Moreover, it is difficult to
apply it to multi-channel processes.

We generalize this approach and thus remove all these limitations. First of all,
we expand a more fundamental quantity: the Jost matrix. When the Jost-matrix
expansion in the power series is obtained, one can easily derive the corresponding
expansion of the S-matrix, the phase-shift, or any other quantity that is needed.
Secondly, it is not necessary to do the expansion near the point E = 0. Actually,
the expansion can be done around any complex value of variable E. Concerning
the multi-channel problems, for the Jost matrices, this does not pose any difficulty.
Simply, the expansion coefficients become matrices.

In order to expand a function in the Taylor series of E, one has to be sure
that this function is an analytic and single-valued function of E. However, all the
quantities describing the scattering processes (amplitude, S-matrix, Jost matrix,
etc) are multi-valued functions defined on a complicated Riemann surface of the
energy with the number of branch points equal to the number of channels. In order
to circumvent this difficulty, we use earlier derived general semi-analytic expression
for a multi-channel Jost matrix, where all the factors responsible for its “bad behav-
ior,” are given explicitly. The remaining unknown functions are more simple, more
smooth, and (more importantly) are analytic and single-valued functions defined
on a simple energy plane. We only do the expansion for these functions.

In our earlier publication,9 we demonstrated how the proposed method works for
the reactions involving neutral particles. In the present paper, we consider a more
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general case when the potential has both a short-range part and a Coulomb tail.
Similar to the simple effective-range theory, the presence of the Coulomb potential
makes the explicit coefficients in the semi-analytic expression for the Jost matrix
more complicated. However, the remaining functions of E are still smooth and can
be approximated by just a few terms of the Taylor series. We have demonstrated
this using a two-channel model.

We have shown that even with rather inaccurate experimental data (∆ = 0.10
in our model) the resonances can still be found. For the narrow resonance, we
managed to reproduce not only the energy and total width, but the partial widths
as well, when the data points had rather big deviations from the exact values. For a
wide resonance (the resonance number 2) with such a high experimental noise, we
still obtained reasonable parameters. And even the energy of the extremely wide
resonance (number 3) was obtained, not far from the exact value. This shows that
the proposed method is accurate and stable.

One of the advantages of the proposed method is that the fitting procedure
involves all matrix elements of the Jost matrix and therefore all elements of the
S-matrix even if the data are available just in one channel. The resulting S-matrix
should therefore be correct in all channels. This means that by fitting accurately-
measured data in one or two channels, we could in principle obtain a reasonable
estimate for the cross-section in the other channels where the measurements are
difficult or impossible.

It should be noted that the proposed method is nonrelativistic and therefore
cannot be directly used in high-energy physics. There are however a wide range of
problems in atomic and low-energy nuclear physics, where it could find applications.
In principle, one can try the same parametrization for high energies as well, if the
relativistic relation between the energy and momentum, E =

√
�2k2c2 + µ2c4, is

used in all the formulae. Such “intuitive” inclusion of relativistic kinematics into
nonrelativistic operators is very common for various parametrizations of scattering
data in particle physics. In our case, however, this would mean that mathematical
rigor and substantiation are lost.
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Academic Publishers, Dordrecht/Boston/London, 1989), pp. 276–295.

2. Nstar 2005, Proceedings of the Workshop on the Physics of Excited Nucleons, Florida
State University, Tallahassee, USA (12–15 October 2005), World Scientific (2006),
pp. 1–66.

3. G. Breit and E. Wigner, Phys. Rev. 49 (1936) 519.
4. S. A. Rakityansky, S. A. Sofianos and N. Elander, J. Phys. A: Math. Theor. 40 (2007)

14857.
5. P. Masjuan and J. J. Sanz-Cillero, Eur. Phys. J. C 73 (2013) 2594.
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