IOPSClence iopscience.iop.org

Home Search Collections Journals About Contactus My IOPscience

Analytic structure and power series expansion of the Jost function for the two-dimensional

problem

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
2012 J. Phys. A: Math. Theor. 45 135209
(http://iopscience.iop.org/1751-8121/45/13/135209)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 137.215.6.53
The article was downloaded on 23/03/2012 at 13:35

Please note that terms and conditions apply.



http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1751-8121/45/13
http://iopscience.iop.org/1751-8121
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

TIOP PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND THEORETICAL

J. Phys. A: Math. Theor. 45 (2012) 135209 (28pp) doi:10.1088/1751-8113/45/13/135209

Analytic structure and power series expansion of the
Jost function for the two-dimensional problem

SA Rakityansky1 and N Elander’

1 Department of Physics, University of Pretoria, Pretoria 0002, South Africa
2 Division of Molecular Physics, Department of Physics, Stockholm University,
Stockholm SE-106 91, Sweden

E-mail: rakitsa@up.ac.za

Received 30 December 2011, in final form 13 February 2012
Published 20 March 2012
Online at stacks.iop.org/JPhysA/45/135209

Abstract

For a two-dimensional quantum-mechanical problem, we obtain a generalized
power series expansion of the S-matrix that can be done near an arbitrary point
on the Riemann surface of the energy, similar to the standard effective-range
expansion. In order to do this, we consider the Jost function and analytically
factorize its momentum dependence that causes the Jost function to be a multi-
valued function. The remaining single-valued function of the energy is then
expanded in the power series near an arbitrary point in the complex energy
plane. A systematic and accurate procedure has been developed for calculating
the expansion coefficients. This makes it possible to obtain a semi-analytic
expression for the Jost function (and therefore for the S-matrix) near an arbitrary
point on the Riemann surface and use it, for example, to locate the spectral
points (bound and resonant states) as the S-matrix poles. The method is applied
to a model similar to those used in the theory of quantum dots.

PACS numbers: 03.65.Nk, 03.65.Ge, 24.30.Gd

1. Introduction

It is probable that an average reader of this journal perceives the one-dimensional (1D) and
two-dimensional (2D) problems as simplified toy models of quantum mechanics. Although
such an attitude has its roots in the standard courses of quantum mechanics, this perception
is far from being adequate. First of all, modern nanotechnology allows us to fabricate
microscopic quantum devices that behave and can be described as 1D or 2D. The 2D tunneling
of particles plays an important role in superconductive tunnel junctions and even in some
biological molecules [1]. Besides that, the corresponding quantum-mechanical problems are
not mathematically simple as one may think. Indeed, in contrast to the motion of a particle
in three-dimensional (3D) space, the 1D motion of the same particle on an infinite line is
inherently a two-channel problem, where the channels are the left and right halves of the line

1751-8113/12/135209+28$33.00 © 2012 IOP Publishing Ltd Printed in the UK & the USA 1


http://dx.doi.org/10.1088/1751-8113/45/13/135209
mailto:rakitsa@up.ac.za
http://stacks.iop.org/JPhysA/45/135209

J. Phys. A: Math. Theor. 45 (2012) 135209 S A Rakityansky and N Elander

(see, for example, [2, 3]). As far as the 2D scattering is concerned, its amplitude as a function
of the energy has not a square root but a logarithmic branching point (see [4-10] as well as
the subsequent sections of this paper). Therefore from both pure mathematical and practical
points of view, the 2D quantum problem is worthwhile to consider.

In this paper, we focus on solving the 2D problem with the help of power series that are
similar to the famous effective-range expansion (where /ik and &y are the collision momentum
and the S-wave phase shift)

11
kcotdo(k) = —— + Erok2 — Pryk* + Qrgk® 4 -+ -, (1)
a

in terms of the so-called scattering length a, effective radius ry, etc introduced long ago in
nuclear physics [11].

As we already mentioned, the energy-dependent functions of the 2D problem have a
logarithmic branching point at the threshold. As a result, there is a controversy concerning
the 2D analogue of equation (1). Some authors [6-8, 12] define the scattering length ' by
including it in the logarithmic term,

2 ka' 2
cotdok) = = [y +1nw ) + 2042 4 OGH), )
T 2 27

(here y is Euler’s constant), while others [4, 5] try to preserve the traditional form of the
right-hand side of equation (1) and move the logarithmic term to the left-hand side:

2 k 2 s
cotdy(k) = — (¥ +In5 ) = == + O®), 3)

where Ind' = —n /a".

We look at this problem from a more general point of view. What is actually done in the
original effective-range expansion (1) is the construction of the function R(E) = kcot §y(k)
in which the square-root branching of k ~ ++/E at the threshold is compensated by exactly
the same branching of §y(k) ~ ++E. As a result, the function R(FE) does not have branching
points and is a single-valued analytic function of the energy E ~ k*, and therefore can
be expanded in a convergent series R(E) = ay + a1E + aE* + - - -, which is given by
equation (1).

From this reasoning, a next logical step immediately follows: the function R(E) can be
expanded in a more general power series R(E) = bo+ b (E — Ey) + by (E — Ep)? +- - - around
an arbitrary complex energy E( within the domain of its analyticity. In [13, 14], we realized
this idea for the 3D single-channel and multi-channel problems. In doing this, instead of using
R(E), we expanded the analytic single-valued parts of the Jost functions (or Jost matrices
in the multi-channel case) after explicit separation of the factors that are responsible for the
branching.

In this paper, we use the same approach as in [13, 14] to obtain similar expansions of
the Jost functions for the 2D problem. First, we analyze the analytic structure of the Jost
functions and split them into the single-valued and logarithmically branching parts. Then,
we derive a set of differential equations that determine the single-valued parts. And finally,
we look for the solutions of these equations in the form of power series of the energy. The
series (2) and (3) together with simple recipes for calculating any number of their expansion
coefficients are easily obtained from our more general expansions that are done around an
arbitrary complex point Ey. Using the 2D model potential related to quantum dot theory, we
numerically demonstrate the efficiency and accuracy of the proposed method.
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2. Jost function

Radial part u, of the wavefunction describing the motion of a particle of mass u with the
energy E in a circularly symmetric 2D potential U (r) = h*V (r)/2u obeys the differential
equation (a review of the partial-wave analysis for the 2D scattering is given in appendix A)

d? , AA+1D)
5 0-2020
where £ = X + 1/2 is the angular momentum and A = —1/2,1/2,3/2,.... To avoid some
mathematical complications, we assume that the potential V (r) is of short range, i.e. it vanishes

at large distances faster than any power of 1/r (for example, exponentially). Then at large
distances, where V (r) — 0, the radial equation simplifies

- V(r)} ue(E,r) =0, “4)

dr?
This is the Riccati-Bessel equation. As its two linearly independent solutions, we can choose
either the Riccati-Bessel and Riccati-Neumann functions j, (kr) and y, (kr), or the two
Riccati-Hankel functions hf\i) (kr). Any other solution of equation (5) is a superposition
of the two linearly independent solutions. In particular, we can write the asymptotics of the
physical wavefunction as a linear combination of the Riccati—-Hankel functions,

ue(E.r) —> fEVEIT) o k) + f EIRE 5 kr), (6)

d? Ah+ 1
[—+k2——( rj )]uz(E,r)QO, r— 00. )

where the energy-dependent combination coefficients f[(i“/ ") (E) are called the Jost functions.
When r — oo, the Riccati-Hankel functions represent the incoming and outgoing circular
waves. Indeed,

héi:)l/z(kr) _ /n_ere(i)(kr) s eitkr—tn/2n ) _ ik 7y

2 |z| =00
where H Z(i) (2) are the cylindrical Hankel functions. The Jost functions fe(m/ °u) (E) are therefore
the asymptotic amplitudes of the incoming and outgoing waves. Since the flux of the particles
is conserving, for real E we have ] fl(m) (E )} = ‘ f[("“[) (E )‘. Actually, these two functions
are related to each other at different complex values of E as well. Some of such symmetry
properties can be established using the semi-analytic structure of them that is derived in the
subsequent sections. It can also be shown that the partial-wave S-matrix is the ratio of these
functions

M E)
se(E) = s ®)
fo ()
and that zeros of the Jost function fz(i“) (E) are the discrete spectral points &,,
£V (E) =0, ©

i.e. the bound and resonant states of the system.

3. Transformation of the radial equation

Our goal is to establish the analytic structure of the Jost function, i.e. to find such an expression
for it where all possible non-analytic dependences on the energy are given explicitly. This can
be done if we transform the second-order radial equation (4) into an equivalent set of first-order
equations.
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The transformation is done using a method which is known in the theory of differential
equations as the variation parameter method [15, 16]. Following this method, we look for the
unknown function u, (E, r) in the form similar to its asymptotics (6), but with the combination
coefficients being new unknown functions of r,

w(E, r) = F™(E, 1)), (kr) + F(E, bt , (kr), (10)

where Fﬁ(in/ out) (E, r) are the new unknown functions. Since instead of one unknown function

we introduce two of them, they cannot be independent of each other. In principle, we can
impose any reasonable condition relating them. Looking at the asymptotics (6), we see that

fIM(E) = lim FM(E, r), F(E) = lim F(E, 7). (11)
Therefore, at large distances our new functions become constants, and we should have

[0,F ™ ™ (kr) + [8,F " |n (kr) = 0. (12)
As the additional condition imposed on these functions, we demand that relation (12) is valid
not only at large r but at all distances. In the variation parameter method, this condition is
known as the Lagrange condition. In our case, this condition makes Fe(m/ °(E. r) to be the
Jost functions for the potential which is cut-off at the radius r (in the spirit of the variable-phase
approach).

Substituting the ansatz (10) into the radial equation (4) and using the Lagrange condition
(12) together with the known Wronskian of the Riccati—-Hankel functions,

B (kr)d,h (kr) — WP (kr)a,h\ 7 (kr) = 2ik, (13)

we obtain a set of two first-order equations which are equivalent to the original radial
equation (4),

. 1 o "
39,F™ = ——2ikh§+>v[F;m>h§ )+ B, (14)
1 .
(out) _ (=) (in) 7 () (out) 7 (+)
3F, ™ =+l VIF™n™ + F"Rr"]. (15)

The boundary conditions for these equations follow from the requirement that the wavefunction
must be regular everywhere. In particular, this means that u, (E, 0) = 0. It seems that this is
not the case because both hi“ (kr) and h;f) (kr) that are present in expression (10) are singular
at r = 0. Their singularities, however, can cancel each other,

WP @) + 17 (@) = 2j,.), (16)
if they are superimposed with the same coefficient. This can be achieved if both Fl(i“) (E,r)
and Fz(om) (E, r) have the same value at r = 0,

FP(E,0) = F™ (E,0).

Their common value at » = 0 determines the overall normalization of the wavefunction and
therefore can be chosen arbitrarily. To be consistent, we chose it to be 1/2, which makes
uy(E, r) behave near the origin exactly as the Riccati—Bessel function and thus the solution
with the boundary conditions

F™(E,0) = F"(E,0) = { (17)

is what is called the regular solution in the theory of 3D scattering.

For our goal of expressing the non-analytic dependences of the Jost functions in an
explicit form, it is more convenient to re-write the ansatz (10) in terms of the Riccati—Bessel
and Riccati—-Neumann functions

ug(E,r) = A(E, r) ji.(kr) — Bo(E, 1)y, (kr), (18)
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and to obtain the corresponding equations for the unknown functions A, (E, r) and B, (E, r).
Since

P (2) = ji(2) £ iy (2), (19)

this is most simply achieved by making the following linear combinations of equations (14)
and (15):

A((E.r) =F™(E.r) + F"(E.r), (20)
By(E.r) =i[F ™ (E,r) — F"(E, )] 1)
This gives
1
0Ag = — EY)\V(AZJA = Beyn), (22)
I, .
0By = — E]AV(AZJA — Beyy) (23)

with the boundary conditions

A (E,0) =1, By(E,0) =0. (24)

4. Complex rotation

Suppose that the potential V (r) is cut off at certain radius r = R, then the right-hand sides of
the sets of equations (14), (15) or (22), (23) vanish at r > R and thus the derivatives on the
left-hand sides of these equations become zero, i.e. the functions Fz(m/ Y or A, and B, do not
change beyond this point. Therefore, in the spirit of the variable-phase approach, the functions
Fl(m/ (. r) are the Jost functions for the potential which is cut off at the point r. Generally
speaking, when the potential asymptotically vanishes at large distances, we should expect the
convergence of the limits (11).

Therefore, the Jost functions can be calculated by numerical integration of the differential
equations (14), (15) or (22), (23) from r = 0 up to a sufficiently large radius R where the limits
(11) are reached within a required accuracy. This works perfectly for real values of the energy
E. However, when we consider complex energies (for example, in search for resonances),
a technical difficulty arises. This difficulty is caused by the asymptotic behavior (7) of the
Riccati-Hankel functions.

When £ is complex, either hf) (kr) or hf\_) (kr) exponentially diverges, depending on the
sign of Imk. As a result, either equation (14) or equation (15) does not give a numerically
convergent solution. This difficulty is circumvented by using the deformed integration path
shown in figure 1. Instead of integrating the differential equations along the real axis from
r = 0to r = R, we can reach the final point via the intermediate point » = R’ in the complex
plane. Moreover, we can safely ignore the arc R'R since the potential is practically zero at that
distance.

Such a complex rotation helps because the asymptotic behavior (divergent or convergent)
of the functions h;i)(kr) is determined by the sign of Im kr. For a given k = |k| e?, we can
always find such a rotation angle 6 in r = |r| e that the product kr = |kr|e!®=?) has either
positive or negative (or even zero) imaginary part. Various technical details of using complex
rotation in calculating the Jost functions and Jost matrices can be found in [2, 3, 13, 14, 18-25].

5
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Imr

RI

Rer

Figure 1. Deformed contour for integrating differential equations (14) and (15), and (22) and (23).

5. Explicit separation of the non-analytic factors

In order to establish the analytic structure of the Jost functions, we need to have a closer
look at the structure of the Riccati—Bessel and Riccati-Neumann functions. The following
expressions for them (they can be derived using formulae (9.1.2), (9.1.10) and (9.1.11) of
[17]) are the most useful for this

Jallry = KSR A (1), (25)
n=0
oo
i lkr) = k7Y KD (r) + (k) o (kr), (26)
n=0
where
My S (=1)" r 2n+r+1 " N .
W0 = a1 32) (z) ’ orany 4. 27
If A is an integer, then the expansion of y; (kr) is also simple:
0 () — V(=1 = )3
&) = =t 1/2) (2) ’ (28)

h(k) =0. (29)

However, for a half-integer A, we have a more difficult case

A—n—1/2)! sr\2n—2 1
_T(E) ’ 0<n<r—3,
2 r
=15 (Z) 100 (30)
(—1)*3 [Vin+ D +ym—r+D] /ry2nr 1
B Jrnl(n—x—1)! (E) , A+ 5 <n<oo,
k) = 2 1n ("_R> N
4 2

where R is an arbitrary number (in the units of length). It is arbitrary because any increase or
decrease of h(k) caused by the change of R is compensated by the corresponding change in the
first term of equation (30). The parameter R is introduced to separate the r and k dependences

6
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in the original term containing In(kr/2) = In(kR/2) + In(r/R) and to have dimensionless
products under the logarithm. In practical calculations the parameter R can always be taken as
the unit of the length, i.e. R = 1. The yr-function in equation (30) is defined as follows [17]:

F/(I’l) _ -V, n= 1’
Frn) |—y+Y"m, n>2,

where y = 0.577 ... is the Euler constant.

Equations (25) and (26) represent the Riccati—-Bessel and Riccati-Neumann functions in
the form of infinite series. Each term of these series is a product of a function depending on
k and another function depending on r, i.e. the k and r dependences are given in a separable
form.

What do the above formulae tell us about the Jost functions? The functions jj (k) and
v, (kr) are involved in the coefficients of the differential equations (22) and (23) that determine
the Jost functions. This means that the Jost functions are not single-valued functions of the
energy. Indeed, for each choice of E, we have two possible values of the momentum

[21E
k::i: 7.

The index . = —1/2, 1/2, 3/2, ... of the Riccati functions is a half-integer. This means that
the differential equations involve square root and logarithm of the momentum.

Therefore, the Jost functions are defined on a complicated Riemann surface and the
threshold point E = 0 is a branching point of this surface. It would be desirable to find
an expression for the Jost functions in terms of the powers of Vk, the logarithmic function
h(k) and some entire single-valued functions of E. In order to do this, we note that the
series in equations (25) and (26) involve only even powers of k, i.e. the powers of the energy
k*> = 2uE/R?. Since for any finite 7 these series are absolutely and uniformly convergent on
the whole complex plane of E, they define some entire functions, i.e.

Y(n) = (32)

Jalkr)y = VT (B, 1), (33)
yi(kr) = k5, (E, 1) + KT h(k) i (E, 1), (34)
where the ‘tilded’ functions

2 (2nE\"

WE =) (7) 1o, (35)
n=0

_ . (2uEN\"

BEN=Y (%) §P (), (36)
n=0

are single-valued entire functions of complex variable E.

Let us find a similar structure for the functions A, (E, r) and B, (E, r) and through them
for Fg(m/ out) (E, r). For this, we replace the set of equations (22) and (23) with their linear
combinations, namely we multiply equation (23) by /(k) and subtract the result from equation
(22), and as the second equation, we take equation (23) multiplied by k~**D_ As a result, we
obtain

1 . ,
Or(Ae = hBy) = — 2O = RV (Acj = Beya), (37

k@B, = — k20D 5 V(AL — Boyy). (38)
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Now, taking into account equations (33) and (34), we see that
Vi — hjp. = k75, + g, — P g, = kM,
and

Agjr — Boyy, = AT j, — Bok™*5, — Bk hj,
= K" (A¢ — hBy) jy, — k"B

Substituting these expressions into equations (37) and (38), we have

3,(A¢ — hBy) = — k" *MV5, VI (Ag — hBy) ji — k™*Byil, (39)

ok~ PHUBy = — kWD VI (A, — hBy) i — kB, . (40)
If we introduce the ‘tilded’ functions

Ay(E,r) = Au(E, r) — h(k)By(E, k), 41

By(E.r) =k P VBy(E, 1), (42)
then equations (39) and (40) assume the following form:

3,Ar = — WV (Aj, — Biih), (43)

0By = — ,V(Arjr — Bin) (44)
with the boundary conditions (that follow from (24))
Ay(E,0) =1, By(E,0) = 0. (45)

For any finite r, all the coefficient functions in equations (43) and (44) are entire functions of
the parameter E and the boundary conditions are E-independent. According to the Poincaré
theorem [26] the solutions of these equations, i.e. the functions Ag (E, r) and I§g (E,r), are
entire (analytic single-valued) functions of the complex variable E.

Therefore the structure we wanted to find is as follows:

ALE, 1) = Ay(E, 1) + K h(k)By (E, 1), (46)

B(E,r) = k' By(E, 1), (47)

where A (E, r) and B (E, r) are single-valued analytic functions of E. Apart from these single-
valued functions, the original functions A, and B, involve the factors k***! and A (k). Since
A is a half-integer, the power (24 + 1) is always even and thus k***! is also a single-valued
function of E, but 2(k) has a logarithmic branching point at £ = 0.

The functions F""/*" have a similar structure

FMW(E,r) = Y(A¢ —iBy) = HAWE. r) + KT [h(k) — 1Be(E, 1)}, (48)

F(E,r) = YA +1Be) = HA(E, r) + KT [h(k) +11Be(E, 1)}.  (49)
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6. Analytic structure of the Jost functions

What we have established in the previous section is valid for any complex E and any finite
distance r. In other words, so far we have established that the Jost functions (11) have the
structure (48), (49) if the potential is cut off at a certain radius » = R (does not matter
how large R is). The problem is that to prove the analyticity of A,(E, r) and By(E, r) with
respect to the variable E, we used the Poincaré theorem which requires that the coefficients of
equations (43) and (44) be holomorphic functions of E. If E is a real positive number and
the potential is of short range, this is true even if r — oo. Indeed, in such a case both
f,\ (kr) and y;, (kr) oscillate with finite amplitudes even at infinity and thus the coefficients of
equations (43) and (44) simply tend to zero (i.e. remain holomorphic) when r — oo. If
however E is negative or complex, then generally speaking this is not true. As we will see
shortly, there is still a domain of complex E where the coefficients remain holomorphic. In
other words, if we extend r to infinity, we have to narrow the domain of E.

The Riccati-Bessel and Riccati-Neumann functions are linear combinations of the
Riccati—-Hankel functions and thus at large distances behave as exponential functions (7). If
the momentum has a nonzero imaginary part, then one or the other of these exponentials
is diverging and thus both f,\ (kr) and y, (kr) tend to infinity when r — oo. To some
extent, the situation can be saved by using a short-range (exponentially decaying) potential
V(r) ~ exp(—nr), which compensates the divergence of fA (kr) and y, (kr) within a certain
domain D of the complex E-plane along its real axis. The borders of the domain D are
determined by the requirement that none of the coefficients of equations (43) and (44) are
divergent. The behavior (convergent or divergent) of these coefficients is determined by the
product exp(=32ikr) exp(—nr). For a given 7 it is not difficult to find the domain D,

D ={E:|2Im+/2uE/R?| < n}, (50)

which gives the condition
h4 4 hz 2

T+ 2T ReE. 51)
16u%  2u

A similar analyticity domain was obtained by Motovilov [27] for the 3D multi-channel 7'-
matrix, using a rigorous analysis of the corresponding scattering operators.

The faster the potential decays, the wider is the domain. An example of such a domain
is shown in figure 2 for the model used in section 9. It is a parabolic domain along the real
axis, whose border is shown by the solid curve. It crosses the real axis at E &~ —0.0332 (in
donor Hartree units). When r — oo, we can only use the Poincaré theorem within D, and
thus we can say that at least within this domain, the functions A~g (E, 00) and I§g (E, o0) are the
holomorphic functions of variable E.

If the potential V () (or at least its long-range tail) is an analytic function of a complex
variable r and exponentially decays along any ray r = |r|e!’ within a certain sector of the
complex r-plane, then the domain D can be extended by using the complex rotation described
in section 4. With a complex radius, the product exp(42ikr) exp(—nr) vanishes at infinity if
E is within

(ImE)?* <

D = {E : |2Im (kr)| < nRer}, (52)

which generalizes equation (50). It is easy to show thatif E = |E| exp(ix ), then such a domain

can be defined by the following inequality:
R*n? cos? 6
e (X +0) < IPT 020

SulE|

> (53)
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ImFE

0.5

—0.5

—1.0 RN

~1.5 >~

—2.0 -

Figure 2. Domains D for the potential (84), defined by equation (51) (within the solid curve) and
by equation (53) for the rotation angle 6 = 0.057 (within the dashed curve). The energy is given
in the donor Hartree units (see section 9).

With 6 = 0, this condition is transformed into (51). An example of such a domain with the
rotation angle 6 = 0.05 for the potential (84) is shown by the dashed curve in figure 2.

The physically interesting domain of the E-plane where the structure (48), (49) can be
used in practical calculations, lies on the positive real axis (scattering) and in the close vicinity
below it (pronounced resonances). Therefore, we can say that for all practical purposes, this
structure is valid at an arbitrary point E.

If we denote the asymptotic values (within D) of the ‘tilded’ functions as

ar(E) = lim Ay (E, r), be(E) = lim By(E, r), (54)
r— 00 r—00
then the Jost functions and the S-matrix can be written as follows:
i 1 7
fME) = SlacE) + KU h(k) — ilbe (E)}, (55)
1. -
SO (E) = SHanE) + KK + b (E)), (56)

ay(E) + K+ [h(k) + ilb¢ (E)

ag(E) + K2+ [h(k) — ilbe (E)
To find the Jost functions or the §-matrix on any sheet of the Riemann surface, we need to
calculate the functions a, (E) and by (E) only once (because they are single valued). The choice

of the sheet is determined by an appropriate choice of the value of the logarithmic function
h(k). Please note that k***! = k%! is a single-valued function of E.

s¢(E) = (57

7. Power series expansions of the Jost functions

The functions a, (E) and be (E) are holomorphic (i.e. single valued and analytic) and therefore
can be expanded in the Taylor series near any point £y within the domain D of the complex
energy plane. The expansion around the point Ey = 0 will give us the standard effective-range

10
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series. But we can also do such an expansion near an arbitrary point

a(E) =Y ol (Eo)(E — E)", (58)
n=0

be(E) =) B (Eo)(E — Ep)". (59)
n=0

How can the expansion coefficients «\*) and B{" be found? For this purpose, we can derive
differential equations, the solutions of which asymptotically tend to o{® and B{). Indeed,
such an expansion can be done at any fixed radius r because the functions Ay(E,r) and
By (E, r) reach their limits (54) at r if the potential is cut off at this radius (in the spirit of the
variable-phase approach). Therefore for each r, we have

AfE, 1) =Y AV (Ey, r)(E — Ep)", (60)
n=0
By(E.r) =Y B (Ey.r)(E - Ep)", (61)
n=0
where
a9 (Ep) = lim A (Ep, r), B (Ey) = lim B (Eo, r). (62)

Therefore, the differential equations mentioned above should determine the functions
AP (Eo, r) and B{" (Ey, r). In order to obtain such equations, we expand the ‘tilded” functions
J,.(E, r) and y, (E, r) in the Taylor series near an arbitrary point E

J(E,ry="Y"s(Ey,r) (E - Ep)", (63)
n=0

F(E, 1) =Y e (B, 1) (E - Ep)", (64)
n=0

which are more general expansions than the series (35), (36) for the particular case of the
threshold energy Ey = 0. Any number of the expansion coefficients s{*) (Eo, r) and ¢!* (Eo, r)
can be found using the recurrence relations derived in appendix B.

Substituting expansions (60), (61), (63) and (64) into equations (43) and (44), and
equalizing the factors of the same powers of (E — Ej), we obtain the equations we are
looking for,

BAO = = T PVAO — BO), (©5)
i+ j+k=n

B0 = = Y PV (A0 — BO), (66)
i+ j+k=n

with the boundary conditions
AP (Eo, 0) = 810, B (Ey, 0) =0, n=0,1273,.... (67)

These conditions follow from the fact that the corresponding boundary conditions (45) do not
depend on E. Therefore, starting with the initial values (67) at r = 0, and numerically solving

11
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the first N + 1 pairs of differential equations of the system (65), (66) up to a sufficiently large
radius rp,x, we obtain the first N + 1 expansion coefficients:

o) (Bo) = A (Eo, ruw), B (E0) = B (Eo.rma).  n=0,1,2,....N. (68)
These coefficients give us the following approximate formulae for the Jost functions:
N
i 1 : n
(U E) 2 e (Bo) + K k) — 118, (Eo)} (E = Eo)", (69)
n=0
|
U E)Y Y o Eo) + K ) +11B0 (B L (E - Eo)", (70)
n=0

which are valid for any complex value of E within a domain around the chosen central point
Ey. Apparently, the closer the E to Ey, the better the accuracy of these formulae. It is interesting
to note that equation (9) of [10] is the first term of equation (69) for the particular case of
Ey=0.

An alternative way of using formulae (69) and (70) is to treat the expansion coefficients
alY(Ey), BV (Ep), n = 0,1,...,N as fitting parameters. Adjusting them in such a way
that the corresponding cross section (see appendix A4) reproduces experimental data in the
vicinity of a real energy E, one then can use the Jost function (69) at the nearby complex
energies for locating possible resonances. The obvious advantage of such an approach is that
the resonance energy and the width are deduced directly from experimental data using correct
analytic structure of the S-matrix.

8. Effective-range expansion

Far away from the interaction region, the radial wavefunction (18) is a linear combination of
the Riccati—-Bessel and Riccati-Neumann functions

ue(E. 1) — au(E)ju(kr) = be(E)ys k), an
where
a;(E) = lim Ay (E, r), be(E) = lim By(E, r). (72)
r— 00 r—>o0
The functions j, and y, in (71) can be written in their asymptotic form
A
ja(kr) —  sin (kr — —ﬂ> , (73)
r—0o0 2
A
yi(kr) —> — cos (kr — _n) , (74)
r—>o0 2

which gives

. AT ATT
ug(E,r) —> a;(E)sin <kr— 7) + by (E) cos <kr— 7)

. AT
= Nsin |:kr— - +85(E)i| ,

where a, and b, are replaced with their common normalization factor N and the scattering
phase shift §,

a;(E) = Ncosé,(E), (75)

12
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be(E) = Nsiné,(E). (76)
Using relations (46) and (47) at large distances (r — 00),

ay(E) = a(E) + K+ h(k)by (E), (77)

be(E) = kb, (E), (78)

we can construct the so-called effective-range function which is a holomorphic function of the
energy. This is done by taking the ratio
ayg ag + kZ)“-Hth
cotfy = — = —————
bl k2)‘+1 bg
and moving all the ‘troublesome’ terms and factors, which may generate singularities, to the
left-hand side of the equation

a
k2)n+1 cot (SE — ~_K 4 kzl#»lh’
l

K2 [cot 8, (E) — h(k)] = k* [cot 8, (E) — h(k)] = ZZ (E). (79)

e(
Both the numerator and denominator in the last ratio can be written in the form of power series
(58), (59) with Ey = 0

> ol (0)E™
K [cot 8, (E) — h(k)] = Zjo‘% (80)
> o B (O)E"
Using equation (3.6.22) of the book by Abramowitz et al,
ap+aix + a3+ - -
bo + bix+ byx*> + - -
b by (aiby — aph b
:“_0[1+<ﬂ__1)x+<“_2_ 1(@1bo — aoh) __2>xz+... ,
bo ap bo ap aob(z) b()
the division of two polynomials in equation (80) is done as follows:
1 (&)
K cot 0 (E) — h(k)] = ——5 + Sk, (81)
a® 2

where the scattering length @) and the effective radius r((f) for the state with the angular
momentum ¢ are given by
(&)

0
a¥ = — 2, (82)
(04
0
2 (0 (£) (&)
r(@) _ h_ al _ ao ﬂl (83)
0o - n €3} )2 :
0 0

9. A numerical example related to quantum dot theory

To demonstrate how the proposed method works, we use the following circularly symmetric
potential, which is motivated by the models that are currently used in the theory of quantum
dots,

U@r) =Vo(r —ro)e "R, (84)

13
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U(r)
+ R
- - o———== - VoR exp (— OR )
- T

U(r) = Vo(r — ro)e /R

Vo = 25

To = 2

R 2

—‘/OT‘O n

Figure 3. Model potential (84) measured in the donor Hartree units 10.96 meV as a function of
the distance measured in the units of donor Bohr radius 101.89 A. The dashed curve is a typical
potential for an empty 2D quantum dot.

with Vy = 25, rp = 2 and R = 2, where V; (as well as all the energies in this example) is
measured in the so-called donor Hartree units and the distances in the units of ‘donor Bohr
radius’, which were chosen to be 10.96 meV and 101.89 A, respectively. These values for the
units are relevant to the motion of electrons in the semiconductor material GaAs [28], where
the effective electron mass is u = 0.063m, (with m, being free electron mass).

Although strictly the potential (84) should be considered as an abstract quantum-
mechanical ‘toy’ model, we chose its shape in such a way that it resembles the potentials
that are currently used to describe the 2D quantum dots (see, for example, [28-31]). As is seen
in figure 3, our potential has a repulsive barrier which is not present in the traditional quantum
dot models. The main reason for introducing such a barrier was to enrich our ‘toy’ model
spectrum with resonances. However, one can argue that such a barrier may appear in real
quantum dots as well. Indeed, when electrons fill up the lower levels of a dot, they should repel
each other and tend to stay mostly at its periphery. This means that for an additional incoming
electron, the attractive force at the center is reduced and a repulsion appears at the border.
In other words, the original empty-dot confining potential (shown with the dashed curve) is
transformed into something that looks like our ‘toy’ potential. Of course, this speculative
reasoning does not mean that we claim that our potential is something more than an abstract
model.

Since nothing special is associated with the angular momentum, we only consider here
the S-wave states (£ = 0). For such a case, the potential (84) supports three bound states and
a sequence of resonances. These spectral points (given in table 1 and shown in figure 3) were
located using the exact approach, i.e. as the roots of equation (9), where fe(m) is the asymptotic
value (11) of the solution of equation (14).

To make sure that we did not miss any of the bound states and/or narrow resonances, we
calculated the S-wave scattering phase shift and checked if it obeys Levinson’s theorem. In

14
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Figure 4. Spectral points generated by the potential (84). Their numerical values are given in

table 1.

Table 1. Spectral points E = E, —iI"/2 (in the units 10.96 meV) generated by the potential (84).
Their distribution on the complex energy surface is shown in figure 4.

E, r
—32.4850428093 0
—16.2643650096 0
—6.2711504590 0
0.5036180960 2 x 10~15
4.9422440057  0.000058 8188
7.1050168573  0.5710776714

7.998 740 9699
8.502563 7363
8.593755 4145
8.3193121385
7.695 296 9586
6.743 6612278
5.524 404 0747
4.0100103640
2.2603614329

3.668497 7768

7.760574 3107
12.305258 1635
17.092263 8769
21.966 391 6836
26.9367555304
31.8688591621
36.811 8853195
41.649 028 4540

[9, 32, 33] it was shown that in the absence of a zero-energy bound state for the P-wave and
always for the S-wave, this theorem is the same as for the 3D scattering, namely

3¢(0) — 8¢(00) = Ny,

(85)

where N is the number of bound states with the angular momentum £. If the energy moves
to the right along the real axis, the phase shift increases by m near each resonance which is
not far from the real axis. The smaller the width, the sharper the increase. When calculating
the phase shift numerically, it is easy to miss a sharp jump corresponding a narrow resonance.
Curve ‘A’ in figure 5 is an example of such omissions (the first two resonances are missed
because of too large a step along the E-axis). The correct phase shift is shown by curve
‘B’. It starts with 3w at the threshold and tends to zero at infinity, in accordance with
equation (85).
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Figure 5. S-wave scattering phase shift for the potential (84). In curve ‘A’ the sharp jumps in 7
(corresponding to the first two extremely narrow resonances) are missing and as a result it does
not obey Levinson’s theorem.

Calculating the first two expansion coefficients and using equations (82) and (83), we
found the following scattering length and effective radius:

ag = —0.452 126 0323 (dimensionless), ro = 0.0586790752 (lengthz).

As a first test of expansions (69) and (70), we performed them at several scattering energies
(i.e. on the real energy axis) and compared the approximate cross section obtained from the
approximate Jost functions (see appendix A4) with the corresponding exact cross section
that was calculated using the exact Jost functions via numerical integration of the system of
differential equations (14) and (15). Figure 6 shows the exact cross section in the interval
E € (0, 10] (thick curve) and the approximate cross sections (thin curves) when only the first
five terms of the series (69), (70) were taken into account for Ey being 1, 5 and 7. It is seen
that within a rather wide interval around each Ej, the expansion reproduces the cross section
very well even with all its zigzags.

The next step was to test our expansions at complex energies. To begin with, we performed
them around a point on the real axis, namely around Ey = 7 (far away from the threshold
energy) and looked at the Jost function at the nearby complex energies. Why 7? Simply because
there is a resonance not far from this point (third resonance of table 1). To check the accuracy
of the expansion, we compared the approximate values of fz(m) (E) at various points around
Ey with the corresponding exact values of the Jost function. Apparently, the closer the point
E is to the center of the expansion, the more accurate should be the result. Figure 7 shows
three closed contours around E, = 7. Within the smallest of them the relative error of fz(m) (E)
obtained by expansion (69) with N = 4 is less than 1%. The other two contours show the
domains of 5% and 10% accuracy. The important fact is that even if the expansion is done
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Figure 6. Comparison of the exact (thick curve) and approximate (thin curve) S-wave cross section
for the potential (84). The approximate curves are obtained using expansion (69) with N = 4 (five
terms) near the points Eg = 1 x 10.96 meV, Ey = 5 x 10.96 meV and Ey = 7 x 10.96 meV. The
inset shows a magnified fragment of the curves near the second resonance.

ImFE
1
0

\\_/*'/

10%

Figure 7. The domains within which the Jost function for the potential (84) is reproduced, using
the first five terms (N = 4) of expansion (69), with the accuracy better than 1%, 5% and 10%. The
expansion is done around the point Ey = 7 x [10.96 meV] on the real axis. The star shows the
third resonance given in table 1.

on the real axis, the semi-analytic formulae (69) and (70) remain valid at the nearby complex
points.

The star in figure 7 is a resonant zero of the exact Jost function. As is seen, the 1%-contour
has a ‘dent’ near this point. The reason for it is that in calculating the relative error, we have an
exact value of fz(m) (E) in the denominator and this value is zero at the resonance. By the way, the
approximate Jost function (69) with N = 4 has zero at E' = 7.105 167 9246 — 50.568 368 5515
which is not far from its exact position. This means that the expansion done on the real axis
can be used for locating narrow resonances.
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Figure 8. Spectral points corresponding to the third and fourth resonances of the potential (84).
Stars show their exact locations. Open and filled circles are obtained using expansion (69) with
N = 2 (three terms) and N = 4 (five terms), respectively. The expansion is done around the point
Ep = (7.55 —i1.06) x 10.96 meV, which is in the middle of these two resonances.

Finally, we tested the expansion around a point in the fourth quadrant (where the
resonances are) of the complex energy plane. When solving the differential equations (65),
(66); we used the complex rotation of the coordinate (see section 4) with such an angle 6 that
Im (kor) = 0 (where ko is the momentum corresponding to Ej). This guarantees that E is
within the domain D (see section 6).

Figure 8 shows the exact positions of two resonances (indicated with stars), the center
of the expansion (cross) at Ey = 7.55 — i1.06, which is in the middle between them, and
two pairs of the approximate locations of these resonances: open circles for three terms of the
expansion and filled circles for five expansion terms. It is seen that the expansion converges,
i.e. the more terms are taken into account, the more accurately the resonances are reproduced.
It should be noted that the chosen position of Ej is the ‘worst case’. If we move Ej a bit closer
toward one of the resonances, it is reproduced much more accurately.

10. Conclusion

In this paper, we show that the Jost function for the two-dimensional scattering can be written
as a sum of two terms, one of which is an analytic single-valued function of the energy E,
while the other term can be factorized in an analytic function of £ and a logarithmic function
of the momentum. This means that the (logarithmic) branching point of the Riemann energy
surface is given in the Jost function explicitly via the logarithmic factor. The remaining energy-
dependent functions are defined on a single energy plane which no longer has any branching
points. For these energy-dependent functions, we derive a system of first-order differential
equations. Then, using the fact that the functions are analytic within a certain domain D, we
expand them in the power series around an arbitrary point £y € D and obtain a system of
differential equations that determine the expansion coefficients.

A systematic procedure developed in this paper allows us to accurately calculate the power
series expansion of the Jost function practically at any point on the Riemann surface of the
energy. Actually, the expansion is done for the single-valued functions of the energy, while
the choice of the sheet of the Riemann surface is done by appropriately choosing the sheet of
the logarithmic function of the momentum.
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The method suggested in this paper makes it possible to obtain a semi-analytic expression
for the two-dimensional Jost function (and therefore for the corresponding S-matrix) near an
arbitrary point on the Riemann surface and thus to locate the resonant states as the S-matrix
poles. Alternatively, the expansion can be used to parametrize experimental data, where the
unknown expansion coefficients are the fitting parameters. Such a parametrization will have
the correct analytic structure. After fitting the data given at real energies, one can use the semi-
analytic Jost function to search for resonances in the nearby domain of the Riemann surface.
The efficiency and accuracy of the suggested expansion are demonstrated by an example of a
two-dimensional model potential.

In this paper, we restrict our consideration to a class of circularly symmetric short-range
potentials (that vanish at infinity faster than any power of 1/r). In principle, the theory should
remain the same for any potential vanishing faster than the centrifugal term (~1/r?) of equation
(4). In such a case this equation asymptotically behaves as equation (5) and therefore all our
derivations remain valid. The only difficulty is that the analyticity domain D must be much
more narrow than is given by condition (51) and shown in figure 2. Moreover, it is unclear
how to obtain this condition for such a potential. This however does not mean that the theory
is not applicable in such a case. Indeed, using the complex rotation, we can always extend D
to practically whole E-plane no matter how narrow the initial D is.

As far as the potentials vanishing as ~1/r? or slower are concerned, our theory needs
modification. In such a case, the asymptotic solutions of equation (4) are different from
the Riccati—Bessel functions. In particular for a potential with Coulombic tails, the Riccati—
Bessel and Riccati-Neumann functions should be replaced with the corresponding regular and
irregular Coulomb functions that have much more complicated power series expansions.

The theory also needs modification for potentials that are not circularly symmetric.
In such a case the angular momentum is not conserved and instead of a single radial
equation (4), we have a set of coupled equations for different £, which can be considered
as a single matrix equation. The Jost function becomes a matrix as well as all the other
quantities in the theory. Similarly, a matrix generalization of the proposed method is needed
for multi-channel systems.
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Appendix A. 2D partial-wave decomposition

The partial-wave decomposition of the wavefunction, scattering amplitude and cross section
for a particle moving on a plane is done using the cylindrical coordinates where the z-axis
(perpendicular to the plane) is needed to define the orbital angular momentum. All the steps
of such a decomposition are similar to the 3D case, but the resulting formulae are not obvious
and cannot be easily obtained from the corresponding 3D analysis. The derivations of various
formulae of this type are given in several different papers (see, for example, [34, 35]). Usually,
these derivations are very concise with many details omitted. Since such derivations are not
present in the standard textbooks on quantum mechanics, we feel that it is worthwhile to
collect everything in one place. This is why we include this appendix.
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Figure 9. Two possible directions of the angular momentum for a particle moving on a plane.

A.l. Radial Schrodinger equation

Consider a particle of mass @, moving on a plane and being affected by a force that is described
by a potential U (¥), which is assumed to be of short range and circularly symmetric,

ur) =um.

To make the derivations simple, we assume that our particle does not have spin (this restriction
can be easily revoked later). In the coordinate representation, the Hamiltonian H of such a
particle is most conveniently expressed using the polar coordinates

2

H= - —A+U,
21 +
A 10 0 n 1 72
= - — ryr— —_— .
ror \ or h2r?
where
R 92
L>=r—
0?2

is the 2D operator of the square of the angular momentum. Its eigenfunctions ), (¢) obeying
the equation

L*YVn(p) = —B*m* Y, (9)

and normalized as

2
V(@) (@) dp = S, (A1)
0
are easy to find
1 .
Vu(p) = e, m=0,=%1,+£2,.... (A2)
21
From the definition of the Fourier series on the interval [0, 277], it follows that
~+00
D @) Vi(@) =58(p — ¢). (A3)

Each value of the angular momentum (except for zero) is represented twice: with two opposite
signs. Classically, these two states correspond to the motion of the particle at the same distance
r from the center and with the same velocity, but at different sides of the center (see figure 9).

The quantum number of the angular momentum ¢ = |m| is always non-negative and
irrespective of its magnitude (if £ # 0), the vector £ can have two (only two) directions: up
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or down (like the spin-1/2). The quantum number m = =+£ is its z-component. In principle,
we can use the same notation for the eigenfunctions of the operator L? as in the 3D case,
namely )y, with two subscripts. However, because of the relation m = 3¢, the subscript € is
redundant.

This can be formulated in a different way. The functions (A.2) form a complete
orthonormal set on the interval ¢ € [0, 27 ]. This means that any (reasonable) function f(¢)
defined on this interval can be written as their linear combination, and such a combination can
be written in the following two (equivalent) ways:

+00 e8]
F@ =Y adn@ =) amVn(@).  an=amn.
m=—00 =0 m==%¢{

In other words, the following summations are equivalent:

400 o0
2. — 2
m=—00 £=0 m==x¢
The operator corresponding to the quantum number m is obtained as follows. The gradient
operator in the cylindrical coordinates is

(A4)

<
l)
I
<
|
A\l

=7

where

and thus

Apparently, both L* and £, commute with the Hamiltonian. The quantum numbers £ and m
are therefore conserving. When specifying m, we implicitly specify the quantum number ¢
as well. This means that the quantum state of the particle is determined by two conserving
quantum numbers, namely the energy E and the z-component of the angular momentum m.
The corresponding wavefunction, obeying the Schrodinger equation,

Hem (F) = Evrgm (1),
can be factorized in the radial and angular parts

u,(E,r)
Ven (7)) = ===V (9), (A.5)
Jr

where \/r in the denominator is introduced to obtain the radial equation without the first
derivative. Substituting this factorized form into the Schrédinger equation, we obtain

d? 2 1/4
ey e =0, (A.6)
dr? r?
where k is the wave number (linear momentum) defined by
2p
2 _
k® = ﬁE (A7)
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and V (r) is the reduced (in the units of (length) ’2) potential
2u
V() = ﬁU (r).

Noting that equation (A.6) is exactly the same for both choices of the sign for m, we conclude
that u,, (E, r) actually depends on £ but not on m. The radial equation can therefore be re-written
in the way we used to see it in the 3D problems

d? AL+ 1
[— Gl V(r)] w(E. r) =0, (A8)
dr? 2
where we introduced
r=t-1 (A9)

and did the replacement
C—1=(-+)=r0+1.
Formally, equation (A.8) looks exactly like the radial equation of the 3D problem. The only

difference is that A is not an integer number

1 1 3 5
)":_E’E’i’i""‘

This simple fact makes a huge difference: it changes the analytic properties of the Jost function
and thus the S-matrix, because the Riccati-Neumann function y, (kr) with a half-integer A has
a logarithmic branching point on the Riemann surface of the energy [17].

A.2. Plane wave and circular waves

Consider a 2D plane wave normalized to the §-function
ikr
- e
k) = —,
(rlk) 7

where ¢ is the polar angle of the momentum hik. This plane wave can be expanded over the
full set {)} of the angular functions (A.2),

-

-, =, - 1
(K'k) =8k —k) = %S(k’ —k)d(p" — ¢, (A.10)

eilz? eikr cos @

7 = g = 2k Yn(@), (A.11)

tm

where the x-axis is directed along the coordinate vector 7. The expansion coefficients

1 2 ) o
an(kr) = 5 /0 e!lreose=me) 4o (A.12)

can be found using the integral representation of the Bessel function [17]

T b4
In(@) = — eizcosgo Ccos (mQD) d§0 = . / eizcosrp(eimw + e—imrp) d(/)
" 0 2mim 0
1 " i( ) i o i( )
= eiceoseme) g — — [ gil=zeosp-mp) 4 A3
2mim /—n ¢ 2 /0 ¢ ( )

Comparing equation (A.12) with (A.13) and using the symmetry property of the Bessel
function J,,(—z) = (—1)"J,,(2), we see that
im
am(kr) = —=J, (kr) (A.14)
V2
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and thus

ik7

€

1 , 1=
==Y "™ kr) = — Y _i" ", (kr) = "I kP YV (@).  (A.15)
27—~

Y
2 2 - 2 =
Using another symmetry property, J_,,(z) = (—1)"J,,(z), we see that the product i"J,, (kr)
does not depend on the sign of m and thus this expansion can be re-written as
ik

¢ 1 |:Jo (kr) + Z ‘(e +e ), (k”)j|

2 2
=1

1 o0
= 5= > e’ cos(Ep)J (kr). (A.16)
£=0

where €, is the ‘multiplicity’ of an £-state, i.e. is the analogue of the factor (2¢ + 1) of the 3D
case

1, ¢=0,
e@={27 i=o (A17)

Expressing the Bessel function via the Riccati—-Hankel functions

1
7@ =\ 5[0, @ + 5 @),

we obtain the following decomposition of the 2D plane wave in the incoming (—) and outgoing
(+4) circular waves

eiE? B 1

27 2akr

where A is defined by equation (A.9).
In the above, we assumed that vector 7 was directed along the x-axis. If this is not the
case, then the dot product

DD T R + B Rn) V() (A.18)

=0 m==%L

k7 = kr(cos @ cos @, + sin ¢ sin ¢,) = krcos(¢, — ¢r)

depends on the two polar angles. In this general case the plane wave is expanded over two sets
of functions {)(¢x)} and {V(¢,)} depending on the angles of the momentum and coordinate
vectors. In a similar way, as we did it above, it is not difficult to show that

ikr

21

+00 00
D T k) Vi @) V(o) = Y 1T (k)Y V(9 V(1)

—00 =0 m=={

1 o .
= 5 )i’ cos [e(pr — g1 Je(kr)
=0

1
= —— > i'[n7 k) + 1P k) |V (@) Y (90)

2mkr o

1 £ (0) *
E OV (00, A.19
o o P ) (A.19)

where

uP(E, r) = b7 (kr) + 1 (kr) = 2, (kr) (A.20)

23



J. Phys. A: Math. Theor. 45 (2012) 135209 S A Rakityansky and N Elander

is a regular solution of the radial Schrodinger equation (A.8) for the case V(r) = 0. These
partial-wave decompositions can be conveniently written in the following symbolic form:

k) = lkem) V() 7 =D lrtm) Vu(e)), (A21)
tm m
/ / ( .@ 2 .
(Fem|k€'m') = S¢pSpumeiJe (k1) = S0 Sy ,/% o (kr), (A.22)
-0 2 . * 7 Y4 2 . *
(Flktm) =i %Jk(kr)ym(%), (klrém) = (—1) j_[_erA(kr)ym((Pk), (A.23)
1 1
(kem|K ¢'m') = Ok~ K800 S (rem|¥ €'m') = ~8(r = )00 Sy (A.24)
f > lkem) (kemlk dk = 1, / > lrtm) (rtm|rdr = 1. (A.25)
0 m m

A.3. Scattering wavefunction

The plane wave (A.19) is a scattering wavefunction v/;:(7) for the particular case of V (r) = 0.
Apparently, the structure of its partial-wave decomposition should be the same for all potentials

N y
K = E’ . r m ’
Y () S ZEm Tug(E, )YV, () YV (@r)

where the factor N is determined by the choice of the potential and the collision energy (for
the free motion, N = 1 at all energies). The purpose of this factor is to always have exactly
the same normalization, namely

(plyp) = 8(k — k). (A.26)
An appropriate value for N can be found as follows. The Riccati—-Hankel functions h;i) (kr)
are two linearly independent solutions of the radial Schrodinger equation (A.8) without the
potential term. This means that for a short-range potential, its solution asymptotically behaves
as a linear combination of the Riccati-Hankel functions

ue(E,r) —> f EMT (k) + £ E)h (kr), (A27)

where the combination coefficients depend on the energy and are called the Jost functions.
In fact, they are the amplitudes of the incoming (—) and outgoing (+) circular waves. On
the other hand, at large distances the wavefunction () consists of two parts: the initial
(incident) wave %(0) () and a scattered circular wave that goes in all directions with a certain
amplitude F,

ikr
F
If 1/;;(}7) is properly normalized, then 1//150) ) = & /(2m). This means that the radial
wavefunction at large distances should also be split in two parts one of which coincides
with function (A.20). In doing such a splitting of the function (A.27), we obtain

) (out)
i) o ()|
¢

and see that N = 1/, ie.

V(P — P+ FE. g )

1
V(P = Nz > i u (B, 1)V (00 V(1) (A.28)

tm
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A.4. Cross section

Defining the partial-wave S-matrix and the amplitude,

" (E) se(E) — 1
E) = ——— E)= —
s¢(E) ) fi(E) Wor

and using
R (kr) — —iexplilkr —Am/2)],
r—00

as well as the fact that

1
= =0
* JT
Ve Inlp) = 17
m 2_ (e—i&/’r ei&/’k + eil‘/)r e—i&/’k )’ g > O
T

€¢
= —cos[€(gr — @)1,
27

we can write the asymptotic behavior of the scattering wavefunction as

1 T e1kr
. — e+ FE,0)— |, A.29
wk(ﬂH—o;zn[eJr ( ¢)ﬁ] (A29)
where ¢ = @ — ¢, is the scattering angle and the total scattering amplitude has the following
partial-wave expansion:

o0
F(E.@) =) efe(E) cos(ly). (A.30)
=0
The cross section for a 2D scattering has the units of length. The number of particles scattered
into the angle spanned by the arc r dg is the product of the flux in that radial direction and the
length of the arc. The corresponding cross section do is defined as such a length that after its

multiplication by the total incoming flux, it gives the same number of particles, i.e.
7™ do = ji* (@)r dg.

Using the standard definition for the particle flux f = h/ (Ziu)(x/f*ﬁl/f — 1//61//*) with the
operator v given by equation (A.4), it is not difficult to find that the incoming (corresponding
to the first term of wavefunction (A.29)) and outgoing (obtained from the second term of the
same wavefunction) fluxes are

7 2
]T(in) — hk j(out) ((0) — hk |]:(Ev (P)|
Qu)*u’ " (2m)2 pr
and thus the differential cross section is
do
—=IFE o)l
de
Using the integral
o 0, £ o
f cos(p)cos(U'p)dp = {2m, £=40 =03 = —&y
0

T, L=0#0 €
the total cross section can be written as follows:

2
o= [ iFEpra=Y o
0 ¢

€
op = 2meg | fo(E)* = f lse(E) — 112, (A31)

where oy is the partial-wave cross section.
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Appendix B. Expansion coefficients for the holomorphic parts of the Riccati-Bessel and
Riccati-Neumann functions

The Riccati—Bessel and Riccati-Neumann functions j, (kr) and y; (kr) can be written in the
following factorized form:

Jalkr) = VT (B, 1), (B.1)

yikr) = k5, (E, r) + K h(k) o (E, ), (B.2)

where the ‘tilded’ functions are holomorphic with respect to the energy variable E. This means
that we can expand them in the Taylor series

WE, 1) =Y sV (B, r) (E - Ep)', (B.3)
n=0

F(E,r) =Y e (Ey,r) (E - E)", (B.4)
n=0

near an arbitrary point Ey. The expansion coefficients,

gy )= ~2 5 & B.5
s\W (Eo, r) n!BE”“( ,7) . (B.5)
1 90" _
o) (Eo,r) = ——W(E,n)| | (B.6)
n! 0E" E=E,
are expressed via the corresponding derivatives. In order to find them, we note that
h2k? 0 JT:
E = = B.7)

2w T GE T Wkok
and also make use of the relations (which follow from equation (9.1.30) of the handbook by
Abramowitz and Stegun [17])

d [ 7.(2) T41(2)
dz |: Pt :| - T T (B.8)
d )
d—Z[Z Th(@] =" Th-1(2), (B.9)
where 7, (z) stands for either jj (z) or y; (z). Therefore,
3 - w0 [jptkn)] w8 [ k)
B = N T | T T At
oE Wk ok | kM Wk a(kr) | (kr)**
A2 s
nr Jar1(kr) Hnr ~
R R
and thus
"o _ M\ =
B = (=55) Fea B, (B.10)

1 Ur\N? [ jon (k) 1 ur\t e [ Jop, (kr)
*) — _ — = -
Su (o, 1) = n! ( hZ) [ Jortntl EE, n! ( ﬁ2> 2 fl+n b, : (B.1D)
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As it should be (since j, (E, r) is single valued), the expansion coefficients s (Ey, r) do not
depend on the choice of the sign of the momentum ky = ++/2uEy/h?. Indeed,

Jatn(kr) B wkr J/\+n+1/2(kr) | JA+n+1/2(k’”) B.12
ol \ T et T\ 2 2 (B.12)

and since (see equation (9.1.35) of [17])
Jy(ze™) = (€)', (2), (B.13)

the numerator and denominator in equation (B.12) acquire the same phase factor when k
changes its sign.

Finding the derivative 9z, (E, r) is a little bit more complicated. The first derivative can
be written as

oE Rk | 3 (kr) 0 (k )
Using equation (B.9) and explicit form of the function (k) given by equation (31), we obtain
a wr!=*

— G, (E, r) =
8ny( r) 2k

2
= % [kA_IYA—l (kr) — K h(k) joy (kr) — — K72, (kr)]
Tr

d . ;,Lrl_’\
—W(E,r)= {—[(kr) i (kr)] — ——[h(k) (kr) ],\(kr)]}

A _ A _ A i
(kr)"ya—1 (kr) = h(k) (k)" ooy (kr) = (kr)" s, (ki) ——

ULr 21
= —=n-1(E,r)— K2 k)

Iz h2
ur
= ﬁyH(E, r) — ﬁfu(kr), (B.14)

where we introduced an auxiliary function

ok, ) = K72, (kr) = k=2 jzr J@(kr) (B.15)

whose derivatives can be found using the followmg recurrence relation:

0]
[k)» ZnJ)L(kr)] _ hT 2n r+1 [

A
k 3 ) (kr)" ja (kr)]

(kr)Zn

K on—xt1 A
hzkr |: 0 )2n+1 (kr)* jy (kr) + U )2n (kr)* j_ 1(kr)]
2
— ;”’Lkl 2(n+1) - (kr)+ k)\ 1— szA— (kr)
ie.
d 2nu ur
8_Ef)uz = fk nt1 + zf)ufl,n- (B.16)

Repeatedly using relations (B. 14) and (B.16), we can calculate any number of the derivatives
9;y,. (E, r) needed for finding the expansion coefficients (B.6).
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