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Abstract

Possible bound and resonant states of the hypernuclear systems Λnn and ΛΛn are sought as zeros of
the corresponding three-body Jost functions calculated within the framework of the hyperspherical ap-
proach with local two-body S-wave potentials describing the nn, Λn, and ΛΛ interactions. Very wide
near-threshold resonance is found for the Λnn system. The position of this resonance turned out to be
sensitive to the choice of the Λn-potential. Bound Λnn state only appears if the two-body potentials are
multiplied by a factor of ∼ 1.5. The system ΛΛn can only have a near-threshold resonance with the ΛΛ-
potential which overbinds the hypernucleus 6

ΛΛHe.
© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

The Λ-hyperon belongs to a wide class of particles that are not in abundance in this world and
therefore are not freely available for scattering experiments. The properties of their interaction
with other particles are studied indirectly. For example, the most important and established way
of studying the ΛN interaction consists in measuring and calculating the spectral properties of
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the so-called Λ-hypernuclei (see, for example, Refs. [1,2] and references therein), which are
bound states of Λ-particles inside atomic nuclei. The most convenient for this purpose are very
light nuclei with A � 10. Firstly, because such simple systems have simple spectra with only few
well separated levels, and secondly, because they allow a reliable theoretical modelling based on
rigorous few-body methods.

The hyperon–nucleon attraction is insufficient to bind a ΛN pair. The simplest hypernucleus
is therefore the hypertriton 3

ΛH, i.e. a bound Λpn complex. Its binding energy is very small (the
Λ particle is separated at ∼ 0.15 MeV) [3–5]. So, it looks like a deuteron core surrounded by a
Λ-halo [3,5].

Similarly to traditional (non-strange) nuclear physics, where the deuteron is the first testing
ground for any NN -potential, the system ΛNN is used to constrain new models of the hyperon–
nucleon interaction. This system was recently analyzed in Refs. [5,6] using rigorous three-body
equations with the potentials constructed within the constituent quark model. The authors of
Ref. [5] gave another proof that the coupling between the ΛNN and ΣNN channels is very
important for the hypertriton binding and showed that 3

ΛH is the only bound state of the ΛNN

system. Their comprehensive analysis lacks only one thing: they did not consider possible three-
body resonances. Meanwhile their results give a strong indication that such resonances may exist
and be located not far from the threshold energy. Indeed, they found that the channel Λnn is
attractive but not sufficient to produce a bound state, and the curve for its Fredholm determinant
turns towards zero near the threshold energy (see Fig. 4 of Ref. [5]). In our present paper, we
partly fill in the gap by considering the Λnn resonance state.

The ΛN - and ΛΛ-potentials are usually constructed in such a way that the calculations with
these potentials reproduce experimentally known bound states of the hypernuclei. Unfortunately,
it is very difficult to do scattering experiments with the Λ-particles because of their short lifetime
(∼ 10−10 s) and extremely low intensity of the beams that can be obtained.

It is well known that even when scattering data are available in full, it is impossible to construct
an interaction potential in a unique way. One can always obtain different but phase-equivalent
potentials (see, for example, Ref. [7]). In this respect the ΛN -case is beyond any hope since
only few experimental points for the Λp scattering are available [8,9]. During the decades of
studying the hypernuclei many features of the ΛN -interaction have been revealed. However the
comparison of the theoretical and experimental spectra remains inconclusive. Different potentials
lead to almost the same spectra of the hypernuclei. We therefore need an additional tool for
testing the potentials.

In principle, such a tool could be based on studying the Λ-nucleus resonances, if they do
exist [10,11]. Indeed, while the scattering and bound states mostly reflect the on-shell properties
of the interaction, the resonances strongly depend on its off-shell characteristics, which may be
different for phase-equivalent potentials.

Our present work is an attempt to attract the attention of both theoreticians and experimen-
talists to the low-energy resonances in the Λ-nuclear systems. As an example, we consider the
three-body systems Λnn and ΛΛn in the minimal approximation, [L] = [Lmin], of the hyper-
spherical harmonics approach. By locating the S-matrix pole on the second (unphysical) sheet of
the complex energy surface, we show that the system Λnn has a near-threshold resonant state.
The position of the pole turns out to be strongly dependent on the choice of the ΛN -potential.
This fact supports the idea that the studying of the Λ-nucleus resonances could be very important
for finding an adequate ΛN -potential.

The demands for adequate hyperon–nucleon (YN ) and hyperon–hyperon (YY ) potentials
come not only from nuclear physics itself, but also from astrophysics. The studies of the neu-
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tron stars show that these very dense and compact objects are in fact “giant hypernuclei” (see,
for example, Ref. [12] and references therein). The Λ-particles appear inside neutron stars when
the density becomes approximately two times higher than the ordinary nuclear density. The equa-
tion of state, describing a neutron star, involves all the inter-particle potentials and therefore its
solutions depend on their properties. In particular, the strength of the short-range repulsion in the
pairs ΛN and ΛΛ is crucial for determining the maximum mass and size of a neutron star. The
repulsive nature of the Λnn three-body force (if it is indeed repulsive) would lead to additional
stability of neutron stars. Moreover, the two-body YY interactions regulate the cooling behaviour
of massive neutron stars [12].

So, the studies of hypernuclear systems are not only important for reaching a better under-
standing of the physics of strange particles, but may also have an important impact on some
other branches of science. This is why the research in this field is carried on by many theoretical
groups and experimental laboratories.

2. Three-body Jost function

There are several different ways of locating quantum resonances. The most adequate are the
methods based on the rigorous definition of resonances as the S-matrix poles at complex en-
ergies. This definition is universal and applicable to the systems involving more than just two
colliding particles. Of course, the problem of locating the S-matrix poles is not an easy task,
and especially for few-body systems. There are different approaches to this problem. To the best
of our knowledge, so far only one of them has been applied to study the hyperon–nucleus reso-
nant states. This was done in Ref. [10] using an analytic continuation of the rigorous three-body
equations proposed by Alt, Grassberger, and Sandhas [13] and known as the AGS-equations. In
our present paper, we follow a different approach based on direct calculation of the Jost function
using the method suggested in Ref. [14].

The three-body systems we consider in the present paper, namely, Λnn and ΛΛn, do not have
bound states in any of the two-body subsystems nn, Λn, or ΛΛ. The only possible collision
process for them is therefore the 3 → 3 scattering. The wave functions describing the systems
that cannot form clusters behave asymptotically as linear combinations of the incoming and
outgoing hyperspherical waves (see, for example, Ref. [15]). Thus it is convenient to describe
the three-body configuration using the hyperspherical coordinates, among which only one (the
hyperradius) runs from zero to infinity while all the others (the hyperangles) vary within finite
ranges.

Within the hyperspherical approach, the wave function is expanded in an infinite series over
the hyperspherical harmonics (similarly to the partial wave decomposition in the two-body prob-
lem), and we end up with an infinite system of coupled hyperradial equations, which is truncated
in practical calculations. All the details of the hyperspherical approach can be found, for example,
in the review by M. Fabre de la Ripelle [16].

It should be noted that although the two-body potentials and masses for the three-body sys-
tems Λnn and ΛΛn are different, they can be treated using exactly the same equations. Indeed,
in both of these systems, we have two identical particles with spin 1/2 and a third particle of the
same spin. In what follows, we therefore consider a general system of this type.

Let m1 be the mass of one of the identical particles, and m2 be the mass of the third particle.
Then the total mass of the system is M = 2m1 + m2 and the reduced masses for the identical
pair and for the third particle are μ1 = m1/2 and μ2 = 2m1m2/M , respectively. With the Jacobi
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Fig. 1. Jacobi vectors defining the spatial configuration of a three-body system of two identical (filled circles) and one
different (open circle) particles.

coordinates shown in Fig. 1, the three-body Schrödinger equation can be written as(
∂2
r + 5

r
∂r − 1

r2
L2 + k2 − V

)
Ψ

[s]
�k1,�k2

(�r1, �r2) = 0, (1)

where

V = 2M(U12 + U13 + U23) (2)

is the sum of the two-body potentials Uij , the vectors {�k1, �k2} represent the incident momenta
of the three-body collision along the corresponding configuration vectors {�r1, �r2}, the superscript
[s] = ((s1s2)s12s3)sσ denotes the spin quantum numbers for the spin-addition scheme �s = (�s1 +
�s2) + �s3, the variable

r =
√

r2
1 + r2

2 (3)

is the hyperradius that gives the “collective” size of the system, k is related to the total energy,
k2 = 2ME, and can be called the hypermomentum, and the operator L2 absorbs all the angular
variables. It is defined as

L2 = − ∂2

∂α2
− 4 cot(2α)

∂

∂α
+ 1

cos2 α
��2
�r1

+ 1

sin2 α
��2
�r2

(4)

with α = arctan(r2/r1), 0 � α � π/2, and ���ri being the operators of the angular momenta asso-
ciated with the corresponding Jacobi coordinates. The solutions of the eigenvalue problem

L2Y[L](ω) = L(L + 4)Y[L](ω) (5)

are the so-called hyperspherical harmonics that depend on the hyperangles ω = {Ω�r1,Ω�r2, α}
including the spherical angles Ω�ri of the vectors �ri and the angle α that determines the ratio
r2/r1. The subscript [L] is the multi-index [L] = {L,�1, �2, �,m} that includes the grand orbital
quantum number,

L = �1 + �2 + 2n, n = 0,1,2, . . . , (6)

as well as the angular momenta associated with the Jacobi vectors and the total angular mo-
mentum � together with its third component m. Combining Y[L](ω) with the spin states χ[s] =
|((s1s2)s12s3)sσ 〉, we obtain the functions

Φ
jjz

[L](ω) =
∑
mσ

〈�msσ |jjz〉Y[L](ω)χ[s] (7)

that constitute a full ortho-normal set of states with a given total angular momentum j in the
spin-angular subspace.
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Similarly to the two-body partial wave decomposition, we can expand a solution of Eq. (1) in
the infinite series over the hyperspherical harmonics,

Ψ
[s]
�k1,�k2

(�r1, �r2) = 1

r5/2

∑
[L][L′]jjz

u
jjz

[L][L′](E, r)Φ
jjz

[L](ω�r )Φ
jjz∗
[L′] (ω�k), (8)

where the hyperangle sets ω�r and ω�k are associated with the pairs {�r1, �r2} and {�k1, �k2}, respec-
tively. After substituting this expansion into Eq. (1) and doing the projection onto the functions
Φ

jjz

[L] , we end up with the following system of hyperradial equations[
∂2
r + k2 − λ(λ + 1)

r2

]
u[L][L′] =

∑
[L′′]

V[L][L′′]u[L′′][L′], (9)

where for the sake of simplicity we dropped the superscripts jjz (indicating the conserving total
angular momentum). In Eq. (9),

V[L][L′](r) = 2M

∫
Φ

jjz∗
[L] (ω)(U12 + U13 + U23)Φ

jjz

[L′](ω)dω, (10)

and λ = L + 3/2. Since we consider a system that cannot form clusters, the asymptotic behav-
iour of its wave function may only involve the incoming and outgoing hyperspherical waves
∼ exp(∓ikr). We therefore look for the solution of matrix equation (9) as

u[L][L′](E, r) = h
(−)
λ (kr)F

(in)

[L][L′](E, r) + h
(+)
λ (kr)F

(out)
[L][L′](E, r), (11)

where the incoming and outgoing hyperspherical waves described by the Riccati–Hankel func-
tions,

h
(±)
λ (kr) −→|kr|→∞ ∓i exp

[±i(kr − λπ/2)
]
, (12)

are included explicitly. The matrices F
(in/out)
[L][L′] (E, r) are new unknown functions. In the theory of

ordinary differential equations, this way of finding solution is known as the variation parameters
method (see, for example, Ref. [17]).

Since instead of one unknown matrix u[L][L′] we introduce two unknown matrices F
(in/out)
[L][L′] ,

they cannot be independent. We therefore can impose an arbitrary condition that relates them to
each other. As such condition, it is convenient to choose the following equation

h
(−)
λ (kr)∂rF

(in)

[L][L′](E, r) + h
(+)
λ (kr)∂rF

(out)
[L][L′](E, r) = 0, (13)

which is standard in the variation parameters method and is called the Lagrange condition. Sub-
stituting the ansatz (11) into the hyperradial equation (9) and using the condition (13), we obtain
the following system of first order equations for these unknown matrices⎧⎪⎨

⎪⎩
∂rF

(in)

[L][L′] = −h
(+)
λ

2ik

∑
[L′′] V[L][L′′][h(−)

λ′′ F
(in)

[L′′][L′] + h
(+)

λ′′ F
(out)
[L′′][L′]],

∂rF
(out)
[L][L′] = +h

(−)
λ

2ik

∑
[L′′] V[L][L′′][h(−)

λ′′ F
(in)

[L′′][L′] + h
(+)

λ′′ F
(out)
[L′′][L′]],

(14)

which are equivalent to the second order Eq. (9). The regularity of a physical wave function at
r = 0 implies the following boundary conditions

F
(in)

[L][L′](E,0) = F
(out)
[L][L′](E,0) = δ[L][L′]. (15)
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Fig. 2. Deformed contour for integrating Eqs. (14) from r = 0 to r = R when the energy is complex.

With these conditions, the columns of the matrix u[L][L′](E, r) are not only regular but linearly
independent as well. Therefore any regular column φ[L](E, r) obeying Eq. (9), can be writ-
ten as a linear combination of the columns of matrix u[L][L′](E, r). In other words, the matrix
u[L][L′](E, r) is a complete basis for the regular solutions.

At large hyperradius where the potentials vanish, i.e.

V[L][L′](r) −→
r→∞ 0, (16)

the right-hand sides of Eqs. (14) should tend to zero and therefore the matrices F
(in/out)
[L][L′] (E, r)

converge to the energy-dependent constants,

f
(in/out)
[L][L′] (E) = lim

r→∞F
(in/out)
[L][L′] (E, r), (17)

that by analogy with the two-body case can be called the Jost matrices. The convergency of these
limits, however, depends on the choice of the energy E and on how fast the potential matrix
V[L][L′](r) vanishes when r → ∞.

When the energy is real and positive (scattering states), the vanishing of the right-hand sides
of Eqs. (14) at large distances is completely determined by the behaviour of V[L][L′](r). It can be
shown that in such a case the limits (17) exist if V[L][L′](r) vanishes faster than 1/r .

With negative and complex energies there is a technical complication. The problem is that
one of the Riccati–Hankel functions on the right-hand side of Eqs. (14) is always exponentially
diverging. Therefore, if at large distances the potential matrix vanishes not fast enough, the con-
vergency of (17) is not achieved. This problem can be easily circumvented by using different
path to the far-away point (see Fig. 2).

This is known as the complex rotation of the coordinate. All the details concerning con-
vergency of the limits (17) and the use of complex rotation for this purpose can be found in
Refs. [14,18–22].

As was said before, the columns of the matrix function u[L][L′](E, r) constitute the regular
basis using which we can construct a physical solution φ[L](E, r) with given boundary conditions
at infinity,

φ[L](E, r) =
∑
[L′]

u[L][L′](E, r)C[L′], (18)

where C[L] are the combination coefficients.
The spectral points En (bound and resonant states) are those at which the physical solution

has only outgoing waves in its asymptotics, i.e. when
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∑
[L′]

f
(in)

[L][L′](En)C[L′] = 0. (19)

This homogeneous system has a non-trivial solution if and only if

detf (in)

[L][L′](En) = 0, (20)

which determines the spectral energies En. As can be easily shown [23], the S-matrix is given by

S(E) = f
(out)
� (E)

[
f

(in)
� (E)

]−1 (21)

and therefore at the energies En it has poles.

3. Two-body potentials

For our calculations, we need two-body potentials describing the interaction between two
neutrons, Λ and neutron, and between two Λ-particles. As is shown in Ref. [24], for all these
potentials the same functional form can be used, namely,

U(ρ) =
[
A1(ρ) − 1 + P σ

2
A2(ρ) − 1 − P σ

2
A3(ρ)

][
β

2
+ 1

2
(2 − β)P r

]
, (22)

An(ρ) = Wn exp
(−anρ

2), n = 1,2,3, (23)

where P σ and P r are the permutation operators in the spin and configuration spaces, respectively.
The sets of the corresponding parameters are given in Table 1. In order to explore how sensitive
the positions of the three-body resonances are to the choice of underlying two-body potentials,
we did the calculations with three different sets of parameters for the Λn-potential.

The ΛΛ-potential (22) of Ref. [24] overbinds the hypernucleus 6
ΛΛHe. For the energy of

ΛΛ-separation from this hypernucleus (calculated in the same paper) it gives BΛΛ( 6
ΛΛHe) =

15.1 MeV, and for the incremental binding energy �BΛΛ, defined as

�BΛΛ

( 6
ΛΛHe

) = BΛΛ

( 6
ΛΛHe

) − 2BΛ

(5
ΛHe

)
, (24)

the authors of Ref. [24] obtain �BΛΛ( 6
ΛΛHe) = 5.2 MeV. Meanwhile the latest experimental

values for these quantities are [25]

BΛΛ

( 6
ΛΛHe

) = 7.25 ± 0.19 MeV, (25)

�BΛΛ

( 6
ΛΛHe

) = 1.01 ± 0.20 MeV. (26)

Table 1
Parameters of the potential (22) for the pairs nn, ΛΛ, and Λn. For the system Λn, three different sets of parameters
(denoted as A, B, and C) are given. All the parameters are taken from Ref. [24]

nn ΛΛ Λn (A) Λn (B) Λn (C)

W1 (MeV) 200.0 200.0 200.0 600.0 5000
W2 (MeV) 178.0 0 106.5 52.61 47.87
W3 (MeV) 91.85 130.8 118.65 66.22 61.66
a1 (fm−2) 1.487 2.776 1.638 5.824 18.04
a2 (fm−2) 0.639 0 0.7864 0.6582 0.6399
a3 (fm−2) 0.465 1.062 0.7513 0.6460 0.6325
β 1 1 1.5 1.5 1.5
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Table 2
Parameters of ΛΛ-potential (27). The additional factor γ = 0.6598 in the second line was introduced in Ref. [26] in
order to precisely reproduce the experimental value (26)

n Wn (MeV) bn (fm)

1 −21.49 1342
2 −379.1 · γ 0777
3 9324 0350

Table 3
Parameters of the effective-range expansion defined by Eq. (28), for the potentials used in our calculations

Potential Spin state a (fm) r0 (fm) V0 (fm3)

nn 1S0 −16.904 2.884 0.687
Λn (A) 1S0 −2.260 3.212 0.637
Λn (B) 1S0 −2.530 3.077 0.577
Λn (C) 1S0 −2.529 3.078 0.576
Λn (A) 3S1 −1.057 4.616 1.206
Λn (B) 3S1 −1.199 4.253 1.022
Λn (C) 3S1 −1.199 4.253 1.017
ΛΛ, Ref. [24] 1S0 −3.011 2.159 0.216
ΛΛ, Ref. [26] 1S0 −0.778 6.564 2.640

In Ref. [26] another ΛΛ-potential is used. It has a weaker attraction and therefore enables the
authors to reproduce the experimental values (25), (26) in their rigorous few-body calculations.
Similarly to (22), the ΛΛ-potential of Ref. [26] also consists of three Gaussian terms,

UΛΛ(ρ) =
3∑

n=1

Wn exp

(
−ρ2

b2
n

)
. (27)

The parameters of this potential for the state 1S0 are given in Table 2. In our calculations, we
used both ΛΛ-potentials, namely, from Refs. [24] and [26]. The near-threshold characteristics of
all two-body potentials used in the present paper are given in Table 3. They include the scattering
length a, effective radius r0, and scattering volume V0 defined by the following low-energy
expansion

k cot δ0 = −1

a
+ r0

2
k2 + V0k

4 + · · · . (28)

For each two-body potential, these quantities were determined using the method described in
Appendix A.

4. The minimal approximation

The system (14) consists of infinite number of equations. For any practical calculation, one
has to truncate it somewhere. Before going any further, it is very logical to try the simplest
approximation, namely, when only the first terms of the sums on the right-hand sides of Eqs. (14)
are retained. This corresponds to the minimal (n = 0) value of the grand orbital number (6) and is
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Fig. 3. The hypercentral potential defined by Eq. (30) for the system Λnn with the three choices (A, B, and C) of the Λn

interaction.

called the hypercentral approximation, [L] = [Lmin]. We assume that the two-body subsystems
are in the S-wave states (�1 = �2 = 0), which means that

λ = λmin = 3

2
.

So, in the minimal approximation, instead of the infinite system (14), we remain with only one
equation,[

∂2
r + k2 − λmin(λmin + 1)

r2

]
u(E, r) = 2M〈U 〉u(E, r), (29)

where all unnecessary subscripts are dropped, and the brackets on the right-hand side mean the
following integration

〈U 〉(r) =
∫

Φ
jjz∗
[Lmin](ω)(U12 + U13 + U23)Φ

jjz

[Lmin](ω)dω. (30)

From the mathematical point of view, Eq. (29) looks exactly like the two-body radial Schrödinger
equation. The only difference is that the angular momentum is not an integer number.

The explicit expression for the integral (30) is given in Appendix B. The hypercentral po-
tentials 〈U 〉 for the systems Λnn and ΛΛn are shown in Figs. 3 and 4. With these hyperradial
potentials the corresponding differential equations determining the three-body Jost functions,
were numerically solved with complex values of the energy. The results of these calculations are
discussed next.

5. Numerical results and conclusion

When looking for zeros of the three-body Jost functions, we found that there were no such
zeros at real negative energies. In other words, neither the system Λnn nor ΛΛn have bound
states.

For the system Λnn, the only zero we found was located on the unphysical sheet of the
energy surface, in the resonance domain. The energy of this resonance (for the three choices of
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Fig. 4. The hypercentral potential defined by Eq. (30) for the system ΛΛn. The curves marked as A, B, and C, are
obtained with the ΛΛ-potential taken from Ref. [24] and with three different Λn-potentials (A, B, and C) taken from the
same paper. The three almost identical curves jointly marked as (A′, B′ , C′), are obtained with the ΛΛ-potential taken
from Ref. [26] and the same three Λn-potentials from Ref. [24].

Table 4
Complex resonance energies E0 = Er − i

2 Γ for the system Λnn with the three choices of Λn-potential

Λn-potential A B C

E0 (MeV) 0.551 − i

2
4.698 0.456 − i

2
4.885 −0.149 − i

2
5.783

Table 5
Complex resonance energies E0 = Er − i

2 Γ for the system ΛΛn with the three choices of Λn-potential (see Table 1)

and with the ΛΛ-potential of Ref. [24] that overbinds the hypernucleus 6
ΛΛHe

Λn-potential A B C

E0 (MeV) 0.096 − i

2
8.392 0.034 − i

2
8.438 −0.552 − i

2
8.681

the Λn-potential) is given in Table 4 and shown in Fig. 5. As is seen, the position of the resonance
strongly depends on the choice of the Λn-potential. For the choice “C”, the resonance becomes
sub-threshold.

In the case of ΛΛn system, the choice of the ΛΛ-potential turned out to be crucial. With the
ΛΛ-potential (22) of Ref. [24], the hypercentral potential has an attractive part with all three
choices (A, B, and C) of the Λn interaction (see Fig. 4). This attraction is however rather weak
and as a result the corresponding resonance poles are located very close to the threshold. For the
case “C”, it is even below threshold. The corresponding resonance energies are given in Table 5
and shown in Fig. 5.

As already mentioned in Section 3, the potential of Ref. [24] overestimates the ΛΛ attraction
and thus overbinds the hypernucleus 6

ΛΛHe. When we replaced it with a more realistic poten-
tial (27) of Ref. [26], the ΛΛn hypercentral potential became pure repulsive, independent of the
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Fig. 5. Resonance points for the systems Λnn and ΛΛn found on the unphysical sheet of the energy surface with the
three sets (A, B, and C) of parameters of the Λn-potential given in Table 1, and with the ΛΛ-potential of Ref. [24], that
overbinds the hypernucleus 6

ΛΛHe.

choice (A, B, or C) of the Λn-potential (see Fig. 4). Of course, the corresponding Jost function
does not have zeros neither in the bound-state nor in the resonance domains.

In order to estimate how far our three-body system Λnn is from being bound, we artificially
increased the depths of the potentials by multiplying them by a scaling factor. When this factor
was increased from 1 upwards, the Jost function zeros moved towards the origin of the energy
surface. At the value of approximately 1.5, the zeros crossed the threshold and moved onto the
real negative axis. In other words, the bound state can appear if the potential strength is increased
by ∼ 50%.

The fact that we did not find bound Λnn or ΛΛn states is not surprising at all. As is shown
in Refs. [3,5], the system ΛNN in the state with the three-body isospin 1 and spin s = 1/2 is
not bound even when the virtual processes of Λ–Σ conversion are taken into account, although
this conversion increases the attraction in the system. Simple but convincing argumentation of
Ref. [27] leads us to the conclusion that the ΛΛn system also cannot be bound. Indeed, the
system ΛΛn is a “mirror” image of Λnn, where the Λ and n replace each other. This means that
the potential term U = Unn + UΛn + UΛn of the three-body Hamiltonian is replaced with U =
UΛΛ +UΛn +UΛn. Since the attraction of UΛΛ is weaker than that of Unn, we may conclude that



Author's personal copy

V.B. Belyaev et al. / Nuclear Physics A 803 (2008) 210–226 221

the system ΛΛn has less chances to be bound than the system Λnn. The calculations performed
in Refs. [24,28–30], show that even the heavier hypernucleus 4

ΛΛH (i.e. the system ΛΛpn) is
bound very weakly, if bound at all.

Multiplying the two-body potentials by an appropriate scaling factor, we can always gener-
ate an artificial three-body bound state, i.e. a pole of the S-matrix on the physical sheet of the
E-surface at a negative energy. Apparently this pole cannot disappear when the scaling factor
returns to its natural value of 1. The pole simply moves via the threshold onto the unphysical
sheet. Since the system Λnn is not far from being bound, the corresponding pole cannot be far
away from the threshold energy. And indeed we located it at low energies.

What we found is, of course, an estimate. But it clearly shows that there is a near-threshold
resonance of the systems Λnn. Actual location of the pole most probably is more close to the
threshold energy. An inclusion of the channel ΛN–ΣN would definitely increase the attraction
in our system (see Ref. [31]) and this would make the widths of the resonances smaller.

As we have demonstrated, the position of the resonance strongly depends on the choice of the
two-body potentials. If such resonance is observed experimentally, it may serve as an additional
instrument for constructing adequate YN - and YY -potentials. There are many possible reactions
where the three-body resonance Λnn may manifest itself. As an example, we can mention the
inelastic collision of the K− meson with the α particle,

K− + 4He −→ p + Λ + n + n, (31)

that produces a proton and the system we are looking for. If a short-lived cluster Λnn is formed
in the final state of this collision, it should be seen in the corresponding two-body kinematics
p–Λnn. The processes of the type (31) fall under the experimental programme AMADEUS [32]
(in the INFN, Italy) and, in principle, this reaction could be thoroughly studied.
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Appendix A. Effective-range expansion

The scattering length a, effective radius r0, scattering volume V0, and constant factors of any
further terms of the expansion (28) can be accurately calculated using a semianalytical represen-
tation of the wave function similar to Eq. (11). Let u(k, r) be the radial wave function obeying
the S-wave two-body Schrödinger equation,(

∂2
r + k2)u(k, r) = V (r)u(k, r). (A.1)

Far away from the origin the right-hand side of this equation vanishes and u becomes a lin-
ear combination of sin(kr) and cos(kr). This suggests the following semianalytical ansatz
for u(k, r):

u(k, r) ≡ sin(kr)A(k, r) + cos(kr)B(k, r). (A.2)

Since one unknown function u is replaced with two unknown functions A and B , they cannot be
independent. We therefore can introduce an arbitrary relation between them. The most convenient
is the condition

sin(kr)∂rA(k, r) + cos(kr)∂rB(k, r) ≡ 0, (A.3)
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which is known in the theory of differential equations as the Lagrange condition of the variation
parameters method. Substituting the ansatz (A.2) into Eq. (A.1) and using the relation (A.3), we
obtain the following equations for the new unknown functions:{

∂rA = cos(kr)
k

[sin(kr)A + cos(kr)B],
∂rB = − sin(kr)

k
[sin(kr)A + cos(kr)B], (A.4)

with the boundary conditions A(k,0) = 1/k and B(k,0) = 0, which follow from the condition
of regularity, namely, u(k, r) → r when r → 0.

Writing the Taylor series for the functions sin(kr) and cos(kr) in the form

sinkr = k

∞∑
n=0

k2nγn(r), (A.5)

coskr =
∞∑

n=0

k2nηn(r), (A.6)

where

γ0 = r, γ1 = − r3

6
, γ2 = r5

120
, . . .

and

η0 = 1, η1 = − r2

2
, η2 = r4

24
, . . . ,

we see that the functions A(k, r) and B(k, r) can also be represented by similar series, namely,

A(k, r) = k−1
∞∑

n=0

k2nαn(r), (A.7)

B(k, r) =
∞∑

n=0

k2nβn(r). (A.8)

Substituting the expansions (A.5), (A.6), (A.7), (A.8) into the system (A.4) and comparing the
terms on its left- and right-hand sides, we obtain differential equations for the k-independent
coefficients of the expansions (A.7), (A.8),{

α′
n = ∑

i+j+k=n ηiV (γjαk + ηjβk),

β ′
n = −∑

i+j+k=n γiV (γjαk + ηjβk),
(A.9)

with simple boundary conditions αn(0) = δn0, βn(0) = 0 for all n.
The remarkable fact is that, thanks to the condition i + j + k = n, not all equations in the

system (A.9) are coupled to each other. Indeed, for n = 0 we have{
α′

0 = η0V (γ0α0 + η0β0),

β ′
0 = −γ0V (γ0α0 + η0β0).

(A.10)

The equations for n = 1 involve only α0, β0, α1, and β1, and so on. This means that when doing
calculations, we do not have to truncate the system. If we are interested in just the leading terms
of the expansions (A.7), (A.8), we only need to solve Eqs. (A.10). In order to obtain the second
terms, we need to add the second pair of equations, and so on.
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Far away from the origin, we have

u(k, r) −→
r→∞ sin(kr)A(k,∞) + cos(kr)B(k,∞). (A.11)

On the other hand, we can define the S-wave phase shift δ0 by the asymptotics

u(k, r) −→
r→∞ N sin(kr + δ0), (A.12)

where N is the normalization constant. Comparing Eqs. (A.11) and (A.12), we see that
A(k,∞) = N cos δ0, B(k,∞) = N sin δ0, and thus

tan δ0(k) = B(k,∞)

A(k,∞)
. (A.13)

Therefore

k cot δ0 = α0(∞) + k2α1(∞) + k4α2(∞) + · · ·
β0(∞) + k2β1(∞) + k4β2(∞) + · · ·

= α0(∞)

β0(∞)
+

[
α1(∞)

β0(∞)
− α0(∞)β1(∞)

β2
0 (∞)

]
k2

+ α0(∞)

β0(∞)

{
α2(∞)

α0(∞)
− β1(∞)

β0(∞)

[
α1(∞)

α0(∞)
− β1(∞)

β0(∞)

]
− β2(∞)

β0(∞)

}
k4 + · · · .

From this series, it is easy to find not only the first three low-energy parameters,

a = −β0

α0

∣∣∣∣
r=∞

,

r0 = 2α0

β0

(
α1

α0
− β1

β0

)∣∣∣∣
r=∞

,

V0 = α0

β0

[
α2

α0
− β1

β0

(
α1

α0
− β1

β0

)
− β2

β0

]∣∣∣∣
r=∞

,

of the expansion (28), but also the k-independent factors of any further terms. For this, we only
need to solve an appropriate number of differential equations of the system (A.9) from r = 0 up
to a faraway point where the potential vanishes.

Appendix B. Hypercentral potential

Hypercentral potential (30) consists of the three terms

〈U 〉 = 〈U12〉 + 〈U13〉 + 〈U23〉, (B.1)

where Uij is the two-body potential acting between particles i and j . As was mentioned above,
we can consider both nnΛ and ΛΛn systems in a unified way. Let 1 and 2 be the identical
particles, i.e. the nn or ΛΛ pair, and 3 be the remaining Λ-particle or neutron, respectively.

The six-dimensional volume element is

d�r1 d�r2 = r2
1 r2

2 dr1 dr2 sin θ�r1 dθ�r1 dϕ�r1 sin θ�r2 dθ�r2 dϕ�r2

= r5 dr
1

4
sin2(2α)dα sin θ�r1 dθ�r1 dϕ�r1 sin θ�r2 dθ�r2 dϕ�r2

= r5 dr dω.
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Therefore in the five-dimensional integral (30) the volume element is

dω = 1

4
sin2(2α) sin θ�r1 sin θ�r2 dα dθ�r1 dϕ�r1 dθ�r2 dϕ�r2 . (B.2)

Since we assume that �1 = �2 = 0 and L = Lmin = 0, the sum (7) is reduced to a single term,

Φ
jjz

[Lmin](ω) = Y[Lmin](ω)χ[s], (B.3)

where the quantum numbers jjz coincide with sσ . The two-body spin s12 of the identical pair in
the S-wave state must be zero. As a result the three-body spin s is always 1/2. The hyperspherical
harmonics Y[Lmin](ω) is trivial (independent of the angles),

Y[Lmin](ω) ≡ π−3/2, (B.4)

which means that the action of the permutation operators P r for all three terms in Eq. (B.1) is
also trivial: its eigenvalue is 1,

P r
ijY[Lmin] = Y[Lmin], ij = {12}, {13}, {23}. (B.5)

The spin permutation operator P σ
12 for the identical pair {12} changes the sign of χ[s],

P σ
12χ[s] = −χ[s], (B.6)

because s12 = 0 in [s] = ((s1s2)s12s3)sσ . For the other two pairs, its action is a bit more compli-
cated. Indeed, recoupling the spins,∣∣((s1s2)s12s3

)
sσ

〉 = ∑
s31

∣∣((s3s1)s31s2
)
sσ

〉〈(
(s3s1)s31s2

)
sσ

∣∣((s1s2)s12s3
)
sσ

〉

= ∣∣((s3s1)0s2
)
sσ

〉 { 1
2

1
2 0

1
2

1
2 0

}
+ √

3
∣∣((s3s1)1s2

)
sσ

〉 { 1
2

1
2 0

1
2

1
2 1

}

= −1

2

∣∣((s3s1)0s2
)
sσ

〉 +
√

3

2

∣∣((s3s1)1s2
)
sσ

〉
,

we find that

χ+
[s]P

σ
13χ[s] = 1

2
. (B.7)

Similarly, it is easy to find for the pair {23} that

χ+
[s]P

σ
23χ[s] = 1

2
. (B.8)

When inserting the potentials Uij given by Eq. (22), into the integral (30), we should use the
following interparticle distances (see Fig. 1),

ρ12 = r

√
M

μ1
cosα, (B.9)

ρ13 = r

√
M

μ2
sin2 α + M

4μ1
cos2 α − M

2
√

μ1μ2
sin(2α) cos θ�r2, (B.10)

ρ23 = r

√
M

μ2
sin2 α + M

4μ1
cos2 α + M

2
√

μ1μ2
sin(2α) cos θ�r2 . (B.11)
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Since the particles 1 and 2 are identical the interactions U13 and U23 are the same. More-
over, according to Eqs. (B.7), (B.8), the product χ+

[s]U13χ[s] has the same dependence on ρ13

as χ+
[s]U23χ[s] depends on ρ23. Actually, they depend on ρ2

13 and ρ2
23 because all the terms in

the potential (22) are of the Gaussian form. Comparing Eqs. (B.10) and (B.11), we see that the
integrands for 〈U13〉 and 〈U23〉 differ only in the sign of the power of the exponential factors
corresponding to the last terms of ρ2

13 and ρ2
23. This difference however has no effect on the

integrals. Indeed, the integration over θ�r2 ,

π∫
0

exp(±f cos θ�r2) sin θ�r2 dθ�r2 =
1∫

−1

exp(±f t) dt = 1

f

(
ef − e−f

) = 2

f
sinh(f ),

gives the same result for both signs. Therefore 〈U13〉 = 〈U23〉 and hence

〈U 〉 = 〈U12〉 + 2〈U13〉. (B.12)

Performing trivial integrations over ϕ�r1 , ϕ�r2 , θ�r1 , and θ�r2 (trivial in the case of 〈U12〉), we obtain
the following expressions for the terms of the hypercentral potential (B.12),

〈U12〉 = 4

π

π/2∫
0

dα sin2(2α)
[
W

{12}
1 exp

(−a
{12}
1 ηr2) − W

{12}
3 exp

(−a
{12}
3 ηr2)], (B.13)

〈U13〉 = 2

π

π/2∫
0

dα sin2(2α)
[
W

{13}
1 exp

(−a
{13}
1 ζ r2)s(a{13}

1 ξr2)

− 3

4
W

{13}
2 exp

(−a
{13}
2 ζ r2)s(a{13}

2 ξr2)
− 1

4
W

{13}
3 exp

(−a
{13}
3 ζ r2)s(a{13}

3 ξr2)], (B.14)

where

η(α) = M

μ1
cos2 α, ζ(α) = M

μ2
sin2 α + M

4μ1
cos2 α,

ξ(α) = M

2
√

μ1μ2
sin(2α), s(f ) = 1

f

(
ef − e−f

)
.

The parameters W
{ij}
n and a

{ij}
n , where the symbol {ij} means a choice of the pair of interacting

particles, are given in Table 1. For each (complex) value of the hyperradius r , which was needed
in our calculations, the integrals (B.13) and (B.14) were evaluated numerically.
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