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Abstract

A microscopic few-body description of near-threshold coherent photoproduction gfrifeson
on tritium and3He targets is given. The photoproduction cross section is calculated using the Finite
Rank Approximation (FRA) of the nuclear Hamiltonian. The results indicate a strong final state
interaction of the; meson with the residual nucleus. Sensitivity of the results to the choice githe
T-matrix is investigated.
0 2002 Elsevier Science B.V. All rights reserved.

PACS 25.80.-e; 21.45.+v; 25.10.+s

1. Introduction

Investigations of they-nucleus interaction are motivated by various reasons. Some
of them, such as the possibility of forming quasi-bound states or resonances [1] in the
n-nucleus system, are purely of nuclear nature. The others are related to the study of the
properties and structure of tt1(1535 resonance which is strongly coupled to the
channel.

For example, itis interesting to investigate the behavior ofitheeson in nuclear media
where, after colliding with the nucleons, it readily forms f3¢ resonance. The interaction
of this resonance with the surrounding nucleons can be described in different ways [2],
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depending on whether the structure of this resonance is defined in terms of some quark
configurations or by the coupling of meson—baryon channels, as suggested in Ref. [3,4].
The estimation by Tiwari et al. [5] shows, that in case of pseudosgalar coupling there

is an essential density dependent reduction ofjtimeeson mass and of the-n’ mixing

angle.

The importance of the influence of the nuclear medium on the mesons passing through
it, was recently emphasized by Drechsel et al. [6]. If this influence is described in terms
of self-energies and effective masses, then the passingmésons through the nucleus
provides “saturation” of the isobar propagator (or self-energy). This phenomenon manifests
itself even in light nuclei [6]. Similar ideas were discussed also in Ref. [7]. In other words,
the propagation of-mesons inside the nucleus is a new challenge for theorists.

Another interesting issue related to thenucleus interaction is the study of charge
symmetry breaking, which may partly be attributed to#her® mixing (see, for example,

Refs. [8-11]). In principle, one can extract the value of the mixing angle from experiments
involving n-nucleus interaction and compare the results with the predictions of quark
models. However, to do such an extraction, one has to make an extrapolation:ef the
nucleus scattering amplitude into the area of unphysical energies beloyrnheleus
threshold. This is a highly model dependent procedure requiring a reliable treatment of
the n-nucleus dynamics.

In this respect, few-body systems such m$, n3He, andn*He, have obvious
advantages since they can be treated using rigorous Faddeev-type equations. To the best
of our knowledge, the exact AGS theory [16] has been used in the few calculations (see
Refs. [12—15]) for the)d and in one recent calculation [17] for théH andy 3He systems.

A solution of the few-body equations presupposes the knowledge of the corresponding
two-bodyT -matrices,y andsy y off the energy shell. Due to the fact that at low energies
the n meson interacts with a nucleon mainly via the formation of Shgresonance, the
inclusion of the higher partial waveg & 0) is unnecessary. Furthermore, since e
interaction is poorly known, the effect of the fine tuned details of the “realistieV
potentials would be far beyond the level of the overall accuracy of théheory.

In contrast to the well-establishédN forces, thenN interaction is constructed using
very limited information available, namely, thgV scattering length and the parameters
of the S11-resonance. Furthermore, only the resonance parameters are known more or
less accurately while the scattering length (which is complex) is determined with large
uncertainties. Moreover, practically nothing is known about the off-shell behavior of the
nN amplitude. It is simply assumed that the off-shell behavior of this amplitude could be
approximated (like in the case af mesons) by appropriate Yamaguchi form-factors (see,
for example, Refs. [12-15,18,19]). However, if the available data are used to construct
a potential via, for example, Fiedeldey’s inverse scattering procedure [20], the resulting
form factor of the separable potential is not that simple. The problem becomes even more
complicated due to the multichannel character of ji\einteraction with the additional
off-shell uncertainties stemming from thremeson channel.

In such a situation, it is desirable to narrow as much as possible the uncertainty intervals
for the parameters of N interaction. This could be done by demanding consistency of
theoretical predictions based on these parameters, with existing experimental data for two-,
three-, and four-body-nucleus processes. This is one of the objectives of the present work.
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To do this, we calculate the cross sections of coheygstiotoproduction ofHe and®H
and study their sensitivity to the parameters of fdeamplitude.

2. Formalism

We start by assuming that the Compton scattering on a nucleon,
y+N—>N+y,
as well as the processes of multiple re-appearing of the photon in the intermediate states,
y+N—->N+n—->y+N—->N+n—---,

give a negligible contribution to the coherepphotoproduction on a nucleus. In our
model, we also neglect virtual excitations and breakup of the nucleus immediately after its
interaction with the photon. With these assumptions, the process

y+A—Atn @)

can be formally described in two steps: in the first one, the photon producestieson
on one of the nucleons,

y+N— N+, 2

in the second step (final state interaction) theneson is elastically scattered off the
nucleus,

n+A—>A+n. 3)

An adequate treatment of the scattering step is, of course, the most difficult and crucial part
of the theory. The first microscopic calculations concerning the low-energy scattering of the
n-meson frontH, 3He, and*He were done in Refs. [21-27] where the few-body dynamics

of these systems was treated by employing the Finite-Rank Approximation (FRA) [28]
of the nuclear Hamiltonian. This approximation consists in neglecting the continuous
spectrum in the spectral expansion

Hp =" &u¥n)(Wul + continuum
n
of the HamiltonianH 4 describing the nucleus. Since the three- and four-body nuclei have
only one bound state, FRA reduces to

Hy =~ &lo) (Yol 4)

Physically, this means that we exclude the virtual excitations of the nucleus during its
interaction with they meson. It is clear that the stronger the nucleus is bound, the smaller
is the contribution from such processes to the elagtiscattering. By comparing with the
results of the exact AGS calculations, it was shown [29] that evemnd@cattering, having

the weakest nuclear binding, the FRA method works reasonably well, which implies that
we obtain sufficiently accurate results by applying this method tg &€ 1 3He, and even
more so to the “He scattering.
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In essence, the FRA method can be described as follows (for details see Ref. [28]). Let
H=ho+V +Hy

be the totah A Hamiltonian, wheré:g describes the freg-nucleus motion and

A
V:ZV,-
i=1

the sum of the two-body-nucleon potentials. The Lippmann—Schwinger equation

A A
T()=) Vi+ Y Viz—ho—Ha) 'T() (5)
i=1 i=1
for the n-nucleusT -matrix can be rewritten as
T(z2) =W(2)+W(@M@)T(2), (6)
where
M(z) = Go(z2)HaG 4(2), @)
Go(x) =(z—ho)™ ", (8)
Ga(z)=(z—ho— Ha) ™™, 9)
and the auxiliary operatd¥ (z) is split into A components of Faddeev-type
A
W)=Y Wi, (10)
i=1
satisfying the following system of equations
A
Wi(2) =1i(z) + 1 (2)Go(x) Y _ W;(2) (12)
J#i

with #; being the two-body"-matrix describing the interaction of tlemeson with theéth
nucleon, i.e.,

ti(z) = Vi + ViGo(2)t (2). (12)

It should be emphasized that up to this point no approximation has been made and,
therefore, the set of equations (6)—(12) is equivalent to the initial equation (5). However, to
solve Eq. (6), we have to resort to the approximation (4) which simplifies its kernel (7) to

Eolyo) (Yol
(z—ho)(z—E—ho)’
With this approximation, the sandwiching of Eq. (6) betwégg| and|o) and the partial
wave decomposition give a one-dimensional integral equation for the amplitude of the
process (3). Although this one-dimensional equation may look similar to the integral
equation of the first-order optical-potential theory, the FRA approach is quite different.
Firstly, in contrast to the optical potential of the first order, the operiat@s) includes all

M(z) ~

(13)
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orders of rescattering via solution of Eq. (11). Secondly,tNeamplitudes; (z) entering
Eqg. (11), are taken as operators in the many-body space and off the energy shell (note that
Go in Eq. (12) is four-body propagator withA reduced mass andis total four-body
energy), i.e., the FRA method does not involve the so-called “impulse approximation”
(using free two-body amplitudes fg) which is an indispensable part of the optical theory.
The question then arises how a photon can be included in this formalism in order to
describe the photoproduction process (1). This can be achieved by following the same
procedure as in Ref. [30] where the reaction (1) with= 2 was treated within the
framework of the exact AGS equations, and the photon was introduced by considering
thenN andy N states as two different channels of the same system. This implies that the
operators; should be replaced by 2 2 matrices. It is clear that such replacements of the
kernels of the integral equations (11) and subsequently of the integral equation (6) lead to
solutions having a similar matrix form

. e W W’ W . TYY TV
i\ v g = i\ wr owm = >\ pm)
1 1 1 l
(14)

Hereti”” describes the Compton scatteriml@’, the photoproduction process, atﬁé] the
elasticn scattering on théth nucleon. What is finally needed is the cross section

do _ pna ky Eyma 1 T a ny a 7 2
a2 ~ 202k, Ey+mA4,Z (e, 0057 [T (Eo+ B0, 1. Ky €)™ (15)

SL,8z,€

of the reaction (1) averaged over orientationsof the initial nuclear spin and photon
polarizatione and summed over spin orientatiosisin the final state. Here and#{ ,

are the spatial and spin—isospin partg/gf(with the third components of the nuclear sp|n
and isospin being, andz, respectlvely)ky andk are the momenta of the photon and
meson,E, is the energy of the photom 4 the mass of the nucleus, apg4 the reduced
mass of the meson and the nucleus.

However, it is technically more convenient to consider radiagihabsorption, i.e., the
inverse reaction. Then the photoproduction cross section can be obtained by applying the
principle of detailed balance. The reason for this is that all the processes in which the
photon appears more than once, i.e., the terms of the integral equations Gty 7"
or W MTY" involving more than one electromagnetic vertex, can be neglected. Omission
of these terms in (6) results in decoupling the elastic scattering equation

T =wm+wmpmrm (16)
from the equation for the radiative absorption
TV =Wr" + WYTMT™. (a7)

Once T™ is calculated, the radiative absorptidirmatrix (17) can be obtained by
integration.

Therefore, the procedure of calculating the photoproduction cross section (15) consists
of the following steps.
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Solving the system of equations

A
nn nn nn nn
W= Ge YW, a9
J#
for the auxiliary elastic-scattering operatdvs”.
e Calculating (by integration) the auxiliary matrica/s"" from

A
W =1 +1]"Goy W' (19)
J#
e Solving the integral equation

A A
=3 "W Y W MT™ (20)
i=1 i=1

for the elastic-scatteringj-matrix.
e Calculating (by integration) the radiative absorptiBmatrix

A A
TV =Y "W+ W TMT, (21)
i=1 i=1

e Substituting thisT"-matrix into Eq. (15) to obtain the differential cross section for the
photoproduction. This is possible because the absolute values of the photoproduction
and radiative absorptiofi-matrices coincide.

3. Two-body interactions

To implement the steps described in the previous section, we need the two-body
T-matriceg™ andr?" for the elastiojN scattering and the radiative absorptig(,, y) N
on a single nucleon, respectively. Furthermore, all equations (18)-(21) have to be
sandwiched betweefig| and |yo) (ground state of the nucleus). Since at low energies
both the elastic scattering and photoproduction ofitheeson on a nucleon proceed mainly
via formation of theS1; resonance, we may retain only tl§ewaves in the partial wave
expansions of the corresponding two-bdtiynatrices.

3.1. Elastic nN scattering

The problem of constructing anV potential or directly the correspondifigmatrix ™"
has no unique solution since the only experimental information available consists of the
S11-resonance pole positiofip — i I"/2 and then N scattering lengtla,x. In the present
work we use three different versionsf.
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Version |

Without any scattering data it is practically impossible to construct a relialMe
potential. In the low-energy region, however, the elastic scattering can be viewed as the
process of formation and subsequent decagofesonance, i.e.,

n+N— S11—> N +n. (22)

This implies that the corresponding Breit—Wigner formula could be a good approximation
for thenN cross section. Therefore, we may adopt the following ansatz

"MK ks 2) = g (KT (2)g (k) (23)

where the propagatet(z), describing the intermediate state of the process (22), is assumed
to have a simple Breit—-Wigner form

A

_— 24
z—Eo+il’/2’ (24)

T(2) =

which guaranties that thE-matrix (23) has a pole at the proper place. The vertex function
g(k) for the processesN < S11 is chosen to be

gty = (K% +a?) " (25)

which in configuration space is of Yukawa-type. The range paramete8.316 fm~1 was
determined in Ref. [31] while the parameters of fag-resonance

Eo=1535MeV— (my +my), I' =150 MeV

are taken from Ref. [32]. The strength parametés chosen to reproduce thenucleon
scattering lengtla, v,

a*(Eo—il'/2)
JJg—a
MUnN

the imaginary part of which accounts for the flux losses intaithechannel. Herge, is
thenN reduced mass.

The two-body scattering length,y is not accurately known. Different analyses [33]
provided values fou,x in the range

0.27 < Rea,y <0.98 fm, 0.19< Ima,y < 0.37 fm. (27)

In most recent publications the value used foralg is around 3 fm. However, for
Rea,y the estimates are still very different (compare, for example, Refs. [34] and [35]). In
the present work we assume that

apy = (0.75+i0.27) fm. (28)

The T-matrix¢" constructed in this way reproduces the scattering length (28) arff] the
pole, but apparently violates the two-body unitarity since it does not obey the two-body
Lippmann—Schwinger equation.
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Version |1

An alternative way of constructing the two-bodf-matrix 7" is to solve the
corresponding Lippmann—Schwinger equation with an appropriate separable potential
having the same form-factors (25). However, a one-term sepafabiatrix obtained in
this way, does not have a polezat Eq — i I"/2. To recover the resonance behavior in this
case, we use the trick suggested in Ref. [19], namely, we use an energy-dependent strength
of the potential

¢

Vk, k' 2) =g(k)[A +C——
{—z

}g (k"),
where A is complex whileC and¢ are real constants. With this ansatz for the potential,
the Lippmann—Schwinger equation gives firanatrix in the form (23) with

@) = _<4m3> A —2)+Ct 29)
T\ )¢ —z2—[AC — )+ CLl/(L— i 22y /)2

The constantst, C, and¢ can be chosen in such a way that the corresponding scattering
amplitude reproduces the scattering lengjly and has a pole at= Eq — iI"/2. This
version oft"" also reproduces the scattering length (28) andSthepole. Moreover, it is
consistent with the condition of two-body unitarity.

Version |11
We can also construet” in the form (23), with the same(z) as in (24), but obeying
the unitarity condition

(1—2rit™)(1—2rit™) =1, (30)

Of course, with the simple form (23) we cannot satisfy the condition (30) at all energies.
To simplify the derivations, we impose this condition df at z = Ep. Since Eq. (30) is
real, it can fix only one parameter and we need one more condition to fix both the real and
imaginary parts of the complex As the second equation, we used the real or imaginary
part of Eq. (26) (version Ill(a) or llI(b), respectively) withx given by (28).

This procedure guaranties two-body unitarity and gives the correct position of the
resonance pole, but the resultiny provides a value ofi,» which, of course, slightly
differs from (28), namely,

apy = (0.774i0.26) fm,  version lll(a) (32)
apy = (0.79+4i0.32) fm,  version IlI(b) (32)

In what follows we use these three versions of the matiix All of them have the
same separable form (23) but differefit). Comparison of the results obtained with these
three T-matrices can give an indication of the importance of two-body unitarity in the
photoproduction processes.
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3.2. Radiative absorption N(n, y)N

In constructing the radiative absorpti@imatrix ¥, the S11 dominance in the near-
threshold region also plays an important role. It was experimentally shown [36] that, at low
energies, the reaction (2) proceeds mainly via formation oftheesonance,

y+N— S11—> N+, (33)

by the S-wave Eg+ multipole. This means that in the standard CGLN decomposition of
the N(y, n)N amplitude (see, for example, Ref. [31]) only the term proportional to the
dot-product(s - €) of the nucleon spin and photon polarization can be retained, i.e.,

Y = Y5 . €). (34)

The dominance of the process (33) implies tfi&¥ in this energy region can be written
in a separable form similar to (23). To construct such a sepaf@tatrix, we use the
results of Ref. [37] where”” was considered as an element of a multi-charhetatrix
which simultaneously describes experimental data for the processes

7+ N—>m+N, 7+ N—>n+N,
y+N—>m+N, y+N—->n+N

on the energy shell in th&;;-channel (theyN scattering length obtained in Ref. [37] is
the same as we use for constructing versions | and 41'9f In the present work, we take
the T-matrix 15 (E) from Ref. [37] and extend it off the energy shell via

K2+ Ezty"(E)az +2upnE
K24+ k'? on o2 + k2

wherex is a parameter. The Yamaguchi form-factors used in this ansatz go to unity on the
energy shell. Since is not known, this parameter is varied in our calculations within an
interval 1< « < 10 fm™! which is a typical range for meson—nucleon forces. It is known
that:¥" is different for neutron and proton. In this work we assume that they have the same
functional form (35) but differ by a constant factor,

"= Aty

Kk E) =

: (35)

Multipole analysis [38] gives for this factor the estimate= —0.84 & 0.15. Therefore,
if we direct thez-axis along the photon momentuim, the radiative absorptiofi-matrix
entering our equations, can be written as

1 = fI (0vex +0ye)(Py + AP, (36)

wheree, ande, are transverse components of the photon polarization vector ®whitend
P, are the operators projecting onto the proton and neutron isotopic states, respectively.

3.3. Nuclear subsystem

Since ther'-matrices™ andr¥" are poorly known and their uncertainties significantly
limit the overall accuracy of the theory, it is not necessary to use any sophisticated
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(“realistic”) potential to describe th& N interaction. Therefore we may safely assume
that the nucleons interact with each other only in $heave state.

To obtain the necessary nuclear wave functign we solve the few-body equations
of the Integro-Differential Equation Approach (IDEA) [39,40] with the Malfliet-Tjon
potential [41]. This approach is based on the Hyperspherical Harmonic expansion method
applied to Faddeev-type equations. In fact, in the casgwhve potentials, the IDEA is
fully equivalent to the exact Faddeev equations. Therefore, the bound states used in our
calculations are derived, to all practical purposes, via an exact formalism.

4. Spin—isospin average

The wave functionyo = ¢g¢g , of the 3H/3He system obtained by solving the
IDEA equations with the Malfliet—Tjon potential, has only the symmetrwave spatial
componenp multiplied by the antisymmetric spin—isospin part

",

1
ot = E(xéz M = Xs.10r.)s

wherey’, x” andn’, n” are the mixed symmetry states in the spin and isospin sub-spaces.
The matrix element of 7 in Eq. (15) involves the average not only over the spatial part
of ¥ but overg® as well. The average?|T"!|¢?) can be done before we start solving
Egs. (18)—(21).

Sincet", Go, andM do not involve spin—isospin operators, the averaging of Egs. (18)
and (20) overg“ is trivial: it does not produce any additional coefficients. Eq. (19),
however, changes. Indeed, for each nucléea {, 2, 3), it involves the operator (36) which
causes nucleon spin to flip over.

Formal averaging ozfj’."7 (for j =1,2,3) over the stateg; , having definite values of
the z-components of total spin{) and isosping), gives the same results

A
S*SQ,SZ foyffng(ex + iE),), for ;= —|—1/2 (3He),
(¢;z»tz |t}~7| ;lzetz> = (37)

1
8_g.s, fgﬁ”é(ex +iey), forr;=-1/2 (3H)

for all three nucleons. This means that all three matrix elem@fljfzt§z|W}’”|¢gz,tz) (j=

1,2, 3) acquire the same coefficient, namefye, + i€y)/3 or (e, + i€y)/3 depending

on t,. Via Eq. (21), the same coefficient goes to the matrix elem¢;ﬁ;’tt1|TV”|¢§’th).
Sincee? + €2 = 1, this gives the factaA|?/9 (for the case ofHe) or 1/9 (for the case of

3H) in the final Eq. (15) for the photoproduction cross section. Thus, the cross section for

the3He target quadratically depends garwhile for the case ofH it is independent of.
5. Resultsand discussion

Figs. 1 and 2 show the results of our calculations for the total cross section of the
coherent process (1). The calculations were done for two nuclear tatgetsd 3He,
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o/og

| x T x J | T | J x
5 - -
4 - 4
3 — -
2 - He [42] .
1 ////>= .
0 r & [ \ [ ] | \ | ] [

600 610 620 630 640 650

E, (MeV)

Fig. 1. Normalized cross section of the coheremphotoproduction on théH and 3He targets, calculated
with the two versions off"” which are denoted as (I) and (Il), respectively. All curves correspond to
ayy = (0.75+i0.27) fm, ¥k =« = 3.316 fm~1, and A = —0.84. The circles represent the points calculated
in Ref. [42] for the3He target within the optical model. Each curve is normalized to its awrithe value ol at

Ey =652 MeV.

o/og

I I I T I T T T I

3He+~ —3He+9n |

IMl-a
14 I1L-b 7

\ T T \ T T T T T T
600 610 620 630 640 650

E, (MeV)

Fig. 2. Normalized cross section of the cohergsthotoproduction orfHe, calculated with the four versions
of +7 which are denoted as (I), (Il), (lli(a)), and (lli(b)), respectively. All four curves correspond to
« =ao =3.316 fm ! and A = —0.84. For the curves (I) and (II) the, v is given by Eg. (28) while for the
(Il(a)) and (ll1(b)) curves by Egs. (31) and (32).

using the three versions of" described in the Section 3.1. The curves corresponding to
these thred -matrices are denoted by (1), (1), and (lli(a), lli(b)), respectively.

We found that the coheremtphotoproduction on these targets is strongly enhanced
in the near-threshold region as compared to higher photon enetjes 610 MeV).
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Table 1

Values of the total cross section of the coherent process (&) at 652 MeV calculated
with the four versions of?"? which are denoted as (1), (1), (11l(a)), and (Ill(b)). These values
are used to normalize the curves shown in Figs. 1 and 2

Target og(l),nb  og (Il), nb  og (lli(@), b og (llI(b)), b &g (Ref. [42]), nb

3H 49.33 30.58
3He 34.54 21.70 33.48 30.48 59.81

This can be attributed to strong final state interaction caused, for example, by a pole of
the scatteringS-matrix, situated in the complex-energy plane not far from the threshold
energy, or in other words, to formation gfnucleus resonance. In order to emphasize this
finding and to remove the insignificant but distracting differences among different curves,
we present the results in a normalized form. Each curve shows theordiip) /oo with

oo being the corresponding cross sectiorEat= 652 MeV, i.e., at the energy where the
near-threshold enhancement dies out. At this energy, all the curves become flat and are
not far from each other as well as from the value of 59.812 nb obtained in Ref. [42]. The
normalization valuesg are given in Table 1.

As can be seen in Fig. 1, the two versions:®f, (I) and (ll), give significantly
different results despite the fact that both of them reproduce the sagmand thesSy-
resonance. This indicates that the scattering ofittmeeson on the nucleons (final state
interaction) is very important in the description of the near-threshold photoproduction
process. This conclusion is further substantiated when comparing our curves with the
corresponding points (circles) calculated for fi¢e target in Ref. [42]. There the final
state interaction was treated using an optical potential of the first order. It is well known
that the first-order optical theory is not adequate at energies near resonances. This is the
reason why the calculations of Ref. [42] underestimateear the threshold where, with
ayn = (0.754i0.27) fm, the systemg 3H andn 3He show a resonance behavior [24].

Significant differences between the corresponding curves (I) and (Il) in Fig. 1 imply that
two-body unitarity is important as well. Actually, due to the resonant character of the final
state interaction, all the details gf’ have strong influence on the photoproduction cross
section in the near-threshold region. Fig. 2 where we compare the results corresponding to
the three choices af(z) in (23), serve as another illustration of this statement.

Since nothing is known about the parametewe assume = « as its basic value.

This can be motivated by the fact that both the elastic scattering and radiative absorption
(photoproduction) of the; meson on the nucleon go via formation of the sasie
resonance. This means that at least one vertex, nam¥lyg> S11 should be the same

for both the elastic scattering and radiative absorption.

To find out how crucial the choice afis, we did two additional calculations with=
1 fm~! andx = 10 fm~L. We found that even with this wide variation, the corresponding
o (E,) curves show practically identical enhancement of the cross section (less than 1%
difference). The cross section only slightly increases when the range of the interaction
becomes smaller (whengrows). Therefore, the dependencexors not very strong and
the choicec = « gives a reasonable estimate for the photoproduction cross section.

As far as the dependence®bn the choice of the parametér=t, " /¢}" is concerned,
we found (see Section 4) that ferphotoproduction odH the cross section in our model
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does not depend o, while for the 3He target theA-dependence is quadratic. This
means that among these two nuclei, the helium is preferable candidate for experimental
determination of the ratid. The sign or any phase factor af however, has no influence
on the cross section if the electromagnetic vertex is taken into account only in the first
order as it was done in our calculation.

The cusp exhibited by all the curves at the threshold of total nuclear break-up reflects
losses of the flux into the non-coherent channel.
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